<h3>
Answer:</h3>
5.00 mol O₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.<u>
</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.01 × 10²⁴ atoms O₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
4.99834 mol O₂ ≈ 5.00 mol O₂
Answer:
I think <em><u>alpha</u></em> and <em><u>beta</u></em> is the answer.
Alkali metals are known for being some of the most reactive metals. This is due in part to their larger atomic radii and low ionization energies. They tend to donate their electrons in reactions and often have an oxidation state of +1. These metals are characterized as being extre
Answer:
it would be the second one thank me later
Explanation:
Answer:
2Ag + H2O -----> Ag2O + 2H
Explanation:
2Ag + H2O -----> Ag2O + 2H is the equation of the reaction between metal and steam. Silver reacts with water (steam) forming silver oxide and hydrogen gas. When the metals react with steam it produces the solid metal oxide and hydrogen gas. On the surface o metals, a protective layer of aluminium oxide is formed that keeps water away from the metal so we can say that silver oxide and hydrogen are formed from the reaction of silver metal and steam.