Answer:
Kinetic energy is energy possessed by a body by virtue of its movement. Potential energy is the energy possessed by a body by virtue of its position or state. While kinetic energy of an object is relative to the state of other objects in its environment, potential energy is completely independent of its environment.
Explanation:
Answer:
Explanation:
energy emitted by source per second = .5 J
Eg = 1.43 eV .
Energy converted into radiation = .5 x .12 = .06 J
energy of one photon = 1.43 eV
= 1.43 x 1.6 x 10⁻¹⁹ J
= 2.288 x 10⁻¹⁹ J .
no of photons generated = .06 / 2.288 x 10⁻¹⁹
= 2.6223 x 10¹⁷
wavelength of photon λ = 1275 / 1.43 nm
= 891.6 nm .
momentum of photon = h / λ ; h is plank's constant
= 6.6 x 10⁻³⁴ / 891.6 x 10⁻⁹
= .0074 x 10⁻²⁵ J.s
Total momentum of all the photons generated
= .0074 x 10⁻²⁵ x 2.6223 x 10¹⁷
= .0194 x 10⁻⁸ Js
b ) spectral width in terms of wavelength = 30 nm
frequency width = ?
n = c / λ , n is frequency , c is velocity of light and λ is wavelength
differentiating both sides
dn = c x dλ / λ²
given dλ = 30 nm
λ = 891.6 nm
dn = 3 x 10⁸ x 30 x 10⁻⁹ / ( 891.6 x 10⁻⁹ )²
= 11.3 x 10¹² Hz .
c )
10 nW = 10 x 10⁻⁹ W
= 10⁻⁸ W .
energy of 50 dB
50 dB = 5 B
I / I₀ = 10⁵ ; decibel scale is logarithmic , I is energy of sound having dB = 50 and I₀ = 10⁻¹² W /s
I = I₀ x 10⁵
= 10⁻¹² x 10⁵
= 10⁻⁷ W
= 10 x 10⁻⁸ W
power required
= 10⁻⁸ + 10 x 10⁻⁸ W
= 11 x 10⁻⁸ W.
For E = 200 gpa and i = 65. 0(106) mm4, the slope of end a of the cantilevered beam is mathematically given as
A=0.0048rads
<h3>What is the slope of end a of the cantilevered beam?</h3>
Generally, the equation for the is mathematically given as

Therefore
A=\frac{10+10^2+3^2}{2*240*10^9*65*10^6}+\frac{10+10^3*3}{240*10^9*65*10^{-6}}
A=0.00288+0.00192=0.0048rads
A=0.0048rads
In conclusion, the slope is
A=0.0048rads
Read more about Graph
brainly.com/question/14375099
Answer:
One piece has a north pole only, and the other piece has à soutn pole only.
Explanation:
mark me brainliest!!
Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.