I assume what you're asking about is, how does the temperature changes when we increase water's mass, according the formula for heat ?
Well the formula is :

(where Q is heat, m is mass, c is specific heat and

is change in temperature. So according this formula, increasing mass will increase the substance's heat, but won't effect it's temperature since they are not related. Unless, if you want to keep the substance's heat constant, in that case when you increase it's mass you will have to decrease the temperature
Answer:
A beaker
Step-by-step explanation:
Specifically, I would use a 250 mL graduated beaker.
A beaker is appropriate to measure 100 mL of stock solution, because it's easy to pour into itscwide mouth from a large stock bottle.
You don't need precisely 100 mL solution.
If the beaker is graduated, you can easily measure 100 mL of the stock solution.
Even if it isn't graduated, 100 mL is just under half the volume of the beaker, and that should be good enough for your purposes (you will be using more precise measuring tools during the experiment).
Answer:
2nd order.
Explanation:
gras, grasshopper, frog, snake, eagle
Pleas mark branliest if you are satisfied with the answer. Thanking you in anticipation.
Answer:
We say that the solution is unsaturated.
Explanation:
If the salt solubility is 36 g in 0.1 L of water then we can dissolve 360 g of salt in 1 L of water.
Because the solution contains 200 g of salt in 1 L of water, the solution is unsaturated because more salt can be added until we reach the saturation point.
We call the solution dilute when we compare the concentration of a solution with the concentration of another solution, but here we do not compare different solutions.
Answer:
The ricks were degraded over time by wind and water and were crushed down into tiny, smaller rocks, which is sand.
Explanation:
This is my first answer sorry im not that smart