Answer:
0.015% and 0.012%
Explanation:
using simultaneous equation
Changes in matter occur every day. There are two types of ways matter can be altered; physically and chemically. Physical changes do not change the composition of the matter while chemical changes occur when one or more substances turn into a completely new substance. Physical changes can be seen through an altering of the substances physical property. A substances physical property is observed and measured without changing the composition of the subject. Descriptive words that would help to identify a substance’s physical property include hard, soft, brittle, flexible, heavy, and light just to name a few. Let’s say you’re eating, throughout the day your stomach starts to growl that is what happens when your stomach is digesting your food. Digestion is an example of chemical change. Chemical change happens every day and more than half the time we don’t realize it whether it’s metal starting to rust, or our food starting to rot. Physical change can happen when your popsicle starts to melt, or your water starting starting to boil. These are examples of physical change.
Answer:
1. 0.97 V
2. 
Explanation:
In this case, we can start with the <u>half-reactions</u>:


With this in mind we can <u>add the electrons</u>:
<u>Reduction</u>
<u>Oxidation</u>
The reduction potential values for each half-reaction are:
- 0.69 V
-1.66 V
In the aluminum half-reaction, we have an oxidation reaction, therefore we have to <u>flip</u> the reduction potential value:
+1.66 V
Finally, to calculate the overall potential we have to <u>add</u> the two values:
1.66 V - 0.69 V = <u>0.97 V</u>
For the second question, we have to keep in mind that in the cell notation we put the anode (the oxidation half-reaction) in the left and the cathode (the reduction half-reaction) in the right. Additionally, we have to use "//" for the salt bridge, therefore:

I hope it helps!
Its a chemical reaction because both are affected by the reaction and changed. hope this helps (ू• o •ू )
Answer:
<em>The correct option is A) Arrhenius</em>
Explanation:
According to the Arrhenius concept of acids and bases, an acid must produce H+ ions when it is present in a solution and the base must produce OH- ions when placed in a solution.
Ammonia does not contain OH- ions of its own when dissolved in water.
The reaction of ammonia dissolving is water can be written as:
NH3 + H2O ⇌ NH4+ + OH−
As we can see from the equation, ammonia does form OH- ions but it does not have OH- ions on its own.
Hence, according to the Arrhenius concept, NH3 is not a base.