<span>10 hertz
Hertz is the frequency of oscillation which is the number of oscillations per second. So if something takes 0.10 s per oscillation, divide 1 second by the period to get the frequency. So
1 / 0.10s = 10 1/s = 10 Hertz
Therefore the object is vibrating at 10 hertz.</span>
Rocks within Earth both expand and contract as P waves pass
Explanation:
Rocks within the earth both expands and contracts as P-waves passes through them. P-waves are elastic waves.
- Elastic waves behaves in such a way that they do not cause permanent deformation of rocks.
- They can be said to cause elastic deformation when they travel through rocks.
- They simply temporarily expand and contract the rock within a short period by causing the vibration of particles of the medium.
- After a short while, the rock returns back to its original position as if nothing has happened to it.
- These elastic waves are better called seismic waves.
- P-waves are primary waves that can travel through any medium.
Learn more:
Earthquakes brainly.com/question/11292835
#learnwithBrainly
100N describes the weight of the sandbag, while 100kg is the mass of the sandbag.
To calculate acceleration, divide your weight by the mass, thus the accleration is:
Answer:
10 Kg
Explanation:
Force is equal to mass times acceleration
therefore mass is equal to force divided by acceleration
please mark me brainliest
Refer to the diagram shown below.
Still-water speed = 9.5 m/s
River speed = 3.75 m/s down stream.
The velocity of the swimmer relative to the bank is the vector sum of his still-water speed and the speed of the river.
The velocity relative to the bank is
V = √(9.5² + 3.75²) = 10.21 m/s
The downstream angle is
θ = tan⁻¹ 3.75/9.5 = 21.5°
Answer: 10.2 m/s at 21.5° downstream.