The answer is 0 degrees Celsius (0°C). It will be where the line flat lines the first time. The second time would be the boiling point. An experiment yielded the above temperature and time information. The freezing point of the material in this experiment if the material is a solid at time zero is 0 degrees Celsius (0°C) .
Answer:

Explanation:
The relative velocity can be calculated by means of the difference between vector B minus vector A.

We can conclude that it is a longitudinal wave because the wave is traveling through a medium displacing particles<span>
</span>
Answer:
The ladder is 3.014 m tall.
Explanation:
To solve this problem, we must use the following formula:
v = x/t
where v represents the woman’s velocity, x represents the distance she climbed (the height of the ladder), and t represents the time it took her to move this distance
If we plug in the values we are given for the problem, we get:
v = x/t
2.20 = x/1.37
To solve this equation for x (the height of the ladder), we must multiply both sides by 1.37. If we do this, we get:
x = (2.20 * 1.37)
x = 3.014 m
Therefore, the ladder is 3.014 m tall.
Hope this helps!
Answer:
a) = 10.22 rad/s
b) = 0.35 m
Explanation:
Given
Mass of the particle, m = 1.1 kg
Force constant of the spring, k = 115 N/m
Distance at which the mass is released, d = 0.35 m
According to the differential equation of s Simple Harmonic Motion,
ω² = k / m, where
ω = angular frequency in rad/s
k = force constant in N/m
m = mass in kg
So,
ω² = 115 / 1.1
ω² = 104.55
ω = √104.55
ω = 10.22 rad/s
If y(0) = -0.35 m and we want our A to be positive, then suffice to say,
The value of coefficient A in meters is 0.35 m