Answer:
Enthalpy change for the reaction is -67716 J/mol.
Explanation:
Number of moles of
in 50.0 mL of 0.100 M of 
= Number of moles of HCl in 50.0 mL of 0.100 M of HCl
=
moles
= 0.00500 moles
According to balanced equation, 1 mol of
reacts with 1 mol of HCl to form 1 mol of AgCl.
So, 0.00500 moles of
react with 0.00500 moles of HCl to form 0.00500 moles of AgCl
Total volume of solution = (50.0+50.0) mL = 100.0 mL
So, mass of solution = (
) g = 100 g
Enthalpy change for the reaction = -(heat released during reaction)/(number of moles of AgCl formed)
=
= ![\frac{-100g\times 4.18\frac{J}{g.^{0}\textrm{C}}\times [24.21-23.40]^{0}\textrm{C}}{0.00500mol}](https://tex.z-dn.net/?f=%5Cfrac%7B-100g%5Ctimes%204.18%5Cfrac%7BJ%7D%7Bg.%5E%7B0%7D%5Ctextrm%7BC%7D%7D%5Ctimes%20%5B24.21-23.40%5D%5E%7B0%7D%5Ctextrm%7BC%7D%7D%7B0.00500mol%7D)
= -67716 J/mol
[m = mass, c = specific heat capacity,
= change in temperature and negative sign is included as it is an exothermic reaction]
Answer:
The new concentration will be 0.01 M.
Explanation:
To determine the new concentration we use the following formula.
concentration (1) × volume (1) = concentration (2) × volume (2)
concentration (1) = 0.1 M
volume (1) = 100 mL
concentration (2) = unknown
volume (2) = 100 mL + 900 mL = 1000 mL
concentration (2) = [concentration (1) × volume (1)] / volume (2)
concentration (2) = (0.1 × 100) / 1000 = 0.01 M
Answer: The yield of dibromide product will be approximately one‑half of the expected yield.
Explanation:
Answer:
3.40g/mL
Explanation:
Density is a measure of mass over volume, so to get the density all we have to do is divide the mass by the volume.
21.35g ÷ 6.28 mL = 3.40g/mL
There are 70.90g of Cl2 in 1 mol (because 35.45g Cl in one mol). So 77.1g/70.9g≈1.0874 mol.