Answer:
Explanation:
alright, dawg, lets get this bread. CHEMISTRY? OH YEAH I LOVE CHEMISTRY.
what is a mol? do you know who avogadro is? sounds like avocado. free shavocado. ok so you MUST REMEMBER THIS NUMBER PLEASE.
please remember this number and commit it to your memory: avogadros number
this is how much a mole is. you know how a pair is 2 and a dozen is 12? ok so a mole is it is confusing at first but hopefully this helps you to understand.
now that we understand this..... lets perform this calculation with a calculator
notice i divide the question by the avogadros number to find out how many moles are in the number. ok but listen... it gets into a tough area here... because HOW ARE WE TO DIVIDE SUCH A HUMONGOUS NUMBER BY ANOTHER HUMONGOUS NUMBER?!?!?
its easy, its cake, just listen this is how you do it. only focus on the numbers NOT the 10 exponential ones. so just 3.90 and 6.02 ok? lets divide these two numbers 3.90 / 6.02 and we get 0.6478... how interesting... ok now lets deal with the exponents of 10. notice that we are DIVIDING these numbers so think of it as subtracting the exponents of ten..... 22 minus 23 equals -1
so we have
now this negative 1 thing is annoying so lets just make it to the power of 0
and anything to the power of 0 just becomes 1.
0.06478
so this is our answer but keep in mind we need 3 sig figs. if we round then we get 0.0648
put this into scientific notation we get
Answer:
Explanation:
A solubility curve is a graph of solubility, measured in g/100 g water, against temperature in °C. Solubility curves for more than one substance are often drawn on the same graph, allowing comparisons between substances
Answer:
The identity of an atom is determined my the number of <u>protons</u>. This is the <u>atomic number</u>.
The particle(s) found inside the nucleus are called <u>protons and neutrons</u>. Their combined mass is referred to as <u>the mass number</u>.
Isotopes have the same number of <u>protons</u>, but different number of <u>neutrons</u>.
Answer:
Option C.
Explanation:
The arrangement of electrons in their orbital follows certain rules.
The Hund's rule practically explained how electrons are distributed in their orbitals.
The Hund's rule states that electrons distributed among the orbitals of the same shell singly (without partner) before pairing occurs.
In the filling of these electrons in their orbitals, we fill in the electron without pairing first because electrons tends to repel each other before filling with the opposite spin as shown in the attached photo.