Answer:
λ = 3 10⁻⁷ m, UV laser
Explanation:
The diffraction phenomenon is described by the expression
a sin θ = m λ
let's use trigonometry
tan θ = y / L
as in this phenomenon the angles are small
tan θ =
= sin θ
sin θ = y / L
we substitute
a y / L = m λ
let's apply this equation to the initial data
a 0.04 / L = 1 600 10⁻⁹
a / L = 1.5 10⁻⁵
now they tell us that we change the laser and we have y = 0.04 m for m = 2
a 0.04 / L = 2 λ
a / L = 50 λ
we solve the two expression is
1.5 10⁻⁵ = 50 λ
λ = 1.5 10⁻⁵ / 50
λ = 3 10⁻⁷ m
UV laser
Answer:
The horizontal component of her velocity is approximately 1.389 m/s
The vertical component of her velocity is approximately 7.878 m/s
Explanation:
The given question parameters are;
The initial velocity with which Margaret leaps, v = 8.0 m/s
The angle to the horizontal with which she jumps, θ = 80° to the horizontal
The horizontal component of her velocity, vₓ = v × cos(θ)
∴ vₓ = 8.0 × cos(80°) ≈ 1.389
The horizontal component of her velocity, vₓ ≈ 1.389 m/s
The vertical component of her velocity,
= v × sin(θ)
∴
= 8.0 × sin(80°) ≈ 7.878
The vertical component of her velocity,
≈ 7.878 m/s.
<span>When two or more identical capacitors (or resistors) are connected
in series across a potential difference, the potential difference divides
equally among them.
For example, if you have nine identical capacitors (or resistors) all
connected end-to-end like elephants in a circus parade, and you
connect the string to a source of 117 volts (either AC or DC), then
you will measure
(117v / 9) = 13 volts
across each unit in the string.</span>
The people are using a lot of electricity blow drying to many peoples hair so i would make a schedule so it dosent get to busy with costumers
Answer:
The boat will move in the direction of the force exerted.
Explanation:
To describe the motion of the boat, we shall first obtain the net force acting on the boat. This can be obtained as illustrated below:
From the question given above, the following data were obtained:
Force exerted (Fₑ) = 300 N
Resistive force (Fᵣ) = 250 N
Net force (Fₙ) =?
Fₙ = Fₑ – Fᵣ
Fₙ = 300 – 250
Fₙ = 50 N
Thus, the net force acting on the boat is 50 N in the direction of the force exerted.
Since the net force is in the direction of the force exerted, the boat will move in the direction of the force exerted..!