The density of the stone is 5 because the formula is mass/volume and the volume is 5 and the mass is 25
<span>7.379 * 10^(-4) is measured, hence prone to error, either human error or via measuring device. In this case,
100 cm = 1 m is written in stone and is unquestionable.
The density of the gold is 19.3 g/cm^3 and could be an approximation.
The approximation is good to at least one night.</span>
The question is missing the graphics required to answer which I have attached as an image.
There are four different representations of the orientation of water molecules around chloride anion. Let's first analyze the water molecule.
We have H-O-H as the structure of water. The oxygen atom is more electronegative than the hydrogen atoms, which results in a partial positive charge on the hydrogen atoms and a partial negative charge on the oxygen atom.
The chloride anion is a negative charge. Therefore, the water molecules should orient themselves with the hydrogen atoms facing the chlorine atom as the partial positive charge on the hydrogen atoms will be attracted to the negative charge of the chlorine atom.
The correct representation is shown in graph 3 which shows all hydrogen atoms facing the chlorine anion.
Answer:
May be the instrument is incorrect or may be error in it.
Explanation:
The copper have not been detected by this test because the test may be not for the detection of copper, may be it is used for identification of another minerals. If there is copper in the lake sample but can't be detected in the test so it means that the instrument which is used for detection is not the right one or having error in that instrument. Every mineral has a specific type of instrument that detect its presence, if we use incorrect instrument for the mineral then we can't detect the presence of that specific mineral.