Charles law gives the relationship between volume and temperature of gas.
It states that at constant pressure volume is directly proportional to temperature
Therefore
V/ T = k
Where V - volume T - temperature in kelvin and k - constant
V1/T1 = V2/T2
Parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
Substituting the values in the equation
267 L/ 480 K = V / 750 K
V = 417 L
Final volume is 417 L
Answer:
<h3>The answer is 32 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 768 g
volume = 24 cm³
We have

We have the final answer as
<h3>32 g/cm³</h3>
Hope this helps you
In response of what like what’s the full clear question
Answer:
Don't mark me brainliest because of this but I'm pretty sure your supposed to give us the words because teachers don't give you things like that without the words you will the answer in with.
<h3>
Answer:</h3>
Balanced equation: 4Fe + 3O₂ → 2Fe₂O₃
Moles of oxygen gas = 9 moles
<h3>
Explanation:</h3>
To answer the question;
- We first write the balanced equation between iron metal and Oxygen
- The balanced equation is given as;
4Fe + 3O₂ → 2Fe₂O₃
- We are given 6 moles of Fe₂O₃
We are required to determine the number of moles of oxygen needed to form 6 moles of Fe₂O₃.
- From the equation, 3 moles of oxygen gas reacts to produce 2 moles of Fe₂O₃
- This means, the mole ratio of O₂ to Fe₂O₃ is 3 : 2
Therefore; Moles of O₂ = Moles of Fe₂O₃ × 3/2
Hence, moles of oxygen = 6 moles × 3/2
= 9 moles
Thus, Moles of Oxygen needed is 9 moles