Answer:
A. 7,348
Step-by-step explanation:
P = le^kt
intitial population = 500
time = 4 hrs
end population = 3,000
So we have all these variables and we need to solve for what the end population will be if we change the time to 6 hours. First, we need to find the rate of the growth(k) so we can plug it back in. The given formula shows a exponencial growth formula. (A = Pe^rt) A is end amount, P is start amount, e is a constant that you can probably find on your graphing calculator, r is the rate, and t is time.
A = Pe^rt
3,000 = 500e^r4
now we can solve for r
divide both sides by 500
6 = e^r4
now because the variable is in the exponent, we have to use a log

ln(6) = 4r
we can plug the log into a calculator to get
1.79 = 4r
divide both sides by 4
r = .448
now lets plug it back in
A = 500e^(.448)(6 hrs)
A = 7351.12
This is closest to answer A. 7,348
Answer:
k = 25
Step-by-step explanation:
(2x - sqrt(k) )^2 Expand this as a binomial
4x^2 - 4x*sqrt(k) + k The middle term must be -20x Solve for k so it is
-4xsqrt(k) = - 20x Divide by -4x
sqrt(k) = -20x/-4x Do the division
sqrt(k) = 5 Square both sides
k = 25
-12
Mark brainliest please
Hope this helps
Answer:
I think its 86
Step-by-step explanation:
As the two lines going in the same direction are parallel and angles within parallel lines add to 180.
so 180-94=86
There are 12 inches in a foot, so 9ft = 108in. Also, 80% = 0.8. Therefore the formula is:
h(n) = 108 * 0.8^n.
To find the bounce height after 10 bounces, substitute n=10 into the equation:
h(n) = 108 * 0.8^10 = 11.60in (2.d.p.).
Finally to find how many bounces happen before the height is less than one inch, substitute h(n) = 1, then rearrage with logarithms to solve for the power, x:
108 * 0.8^x = 1;
0.8^x = 1/108;
Ln(0.8^x) = ln(1/108);
xln(0.8) = ln(1\108);
x = ln(1/108) / ln(0.8) = -4.682 / -0.223 = 21 bounces