The relationship between the distance covered, initial and final speeds, and time can be expressed through the equation,
First equation,
2ad = Vf² - Vi²
Substituting the known values,
2(a)(0.230 km) = (70 km/h)² - (40 km/h)²
The value of a from the equation is 7173.92 km/h².
Second equation,
d = (Vi)(t) + 0.5at²
Substituting the known values,
0.230 km = (40 km/h)(t) + (0.5)(7173.92 km/h²)(t²)
The value of t from the equation is 4.1818 x 10^-3 hours which is also equal to 0.2509 minutes or 15 seconds.
Answer: 15 seconds
Answer:
There would be more hours of sunlight at the equator
Answer : The time passed in years is 20.7 years.
Explanation :
Half-life = 28.1 years
First we have to calculate the rate constant, we use the formula :



Now we have to calculate the time passed.
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = ?
a = initial amount of the reactant = 1.00 g
a - x = amount left after decay process = 0.600 g
Now put all the given values in above equation, we get


Therefore, the time passed in years is 20.7 years.
Answer:
14 m/s²
Explanation:
Start with Newton's 2nd law: Fnet=ma, with F being force, m being mass, and a being acceleration. The applied forces on the left and right side of the block are equivalent, so they cancel out and are negligible. That way, you only have to worry about the y direction. Don't forget the force that gravity has the object. It appears to me that the object is falling, so there would be an additional force from going down from weight of the object. Weight is gravity (can be rounded to 10) x mass. Substitute 4N+weight in for Fnet and 1kg in for m.
(4N + 10 x 1kg)=(1kg)a
14/1=14, so the acceleration is 14 m/s²
I think it's the letter Did (this has to be 20 characters long) it would be Different or would be D