Answer:
70 revolutions
Explanation:
We can start by the time it takes for the driver to come from 22.8m/s to full rest:

The tire angular velocity before stopping is:

Also its angular decceleration:

Using the following equation motion we can findout the angle it makes during the deceleration:

where
= 0 m/s is the final angular velocity of the car when it stops,
= 114rad/s is the initial angular velocity of the car
= 14.75 rad/s2 is the deceleration of the can, and
is the angular distance traveled, which we care looking for:

or 440/2π = 70 revelutions
I'm not that smart but I think it is c I really hope It helps
Answer:
9.3m/s
Explanation:
Based on the law of conservation of momentum
Sum of momentum before collision = sum of momentum after collision
m1u1 +m2u2 = m1v1+m2v2
m1 = 8kg
u1 = 15.4m/s
m2 = 10kg
u2 = 0m/s(at rest)
v1 = 3.9m/s
Required
v2.
Substitute
8(15.4)+10(0) = 8(3.9)+10v2
123.2=31.2+10v2
123.2-31.2 = 10v2
92 = 10v2
v2 = 92/10
v2 = 9.2m/s
Hence the velocity of the 10.0 kg object after the collision is 9.2m/s
Answer:
aₓ = 0
, ay = -6.8125 m / s²
Explanation:
This is an exercise that we can solve with kinematics equations.
Initially the rabbit moves on the x axis with a speed of 1.10 m / s and after seeing the predator acceleration on the y axis, therefore its speed on the x axis remains constant.
x axis
vₓ = v₀ₓ = 1.10 m / s
aₓ = 0
y axis
initially it has no speed, so v₀_y = 0 and when I see the predator it accelerates, until it reaches the speed of 10.6 m / s in a time of t = 1.60 s. let's calculate the acceleration
= v_{oy} -ay t
ay = (v_{oy} -v_{y}) / t
ay = (0 -10.9) / 1.6
ay = -6.8125 m / s²
the sign indicates that the acceleration goes in the negative direction of the y axis
Answer:
“Insanity is relative. It depends on who has who locked in what cage.” R.D. Laing: “Insanity – a perfectly rational adjustment to an insane world.” Nora Ephron: “Insane people are always sure that they are fine. It is only the sane people who are willing to admit that they are crazy.”Sep 20, 2012
Explanation: