1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galben [10]
3 years ago
7

The answer and how to do it?? Thanks

Physics
1 answer:
denis-greek [22]3 years ago
4 0

Answer:

14 m/s²

Explanation:

Start with Newton's 2nd law: Fnet=ma, with F being force, m being mass, and a being acceleration. The applied forces on the left and right side of the block are equivalent, so they cancel out and are negligible. That way, you only have to worry about the y direction. Don't forget the force that gravity has the object. It appears to me that the object is falling, so there would be an additional force from going down from weight of the object. Weight is gravity (can be rounded to 10) x mass. Substitute 4N+weight in for Fnet and 1kg in for m.

(4N + 10 x 1kg)=(1kg)a

14/1=14, so the acceleration is 14 m/s²

You might be interested in
hich muscle fibers are best suited for activities that involve lifting large, heavy objects for a short period of time? cardiac
Temka [501]

Answer:

Dead lifting uses tho muscle fundamentals

Explanation:

6 0
4 years ago
Does coefficient of thermal expansion vary with temperature?
N76 [4]

Answer:

yes

Explanation:

8 0
3 years ago
A force of 15 newtons is used to push a box along the floor a distance of 3 meters. How much work was done?
jeka57 [31]

Answer:

<h3>The answer is 45 J</h3>

Explanation:

The work done by an object can be found by using the formula

<h3>workdone = force × distance</h3>

From the question

distance = 3 meters

force = 15 newtons

We have

workdone = 15 × 3

We have the final answer as

<h3>45 J</h3>

Hope this helps you

7 0
3 years ago
Review. From a large distance away, a particle of mass 2.00 g and charge 15.0σC is fired at 21.0 i^ m/s straight toward a second
MissTica

(a)

Determine the system's initial configuration at ri = infinite particle separation and the system's final configuration at the point of closest approach.

Since the two-particle system is not being affected by any outside forces, we may treat it as an isolated system for momentum and use the momentum conservation law.

m1v1 + m1v2 = (m1+m2)v

The second particle's starting velocity is zero, so:

m1v1  = (m1+m2)v

After substituting the values we get,

v = 6i m/s

(b)

Since the two particle system is also energy-isolated, we may use the energy-conservation principle.

dK + dU = 0

Ki +Ui = Kf + Uf

Substituting the values,

1/2m1v1^2i + 1/2 m2v2^2i + 0 = 1/2m1v1^2f + 1/2m2v2^2f +ke q1q2/rf

The second particle's initial speed is 0 (v2 = 0). Additionally, both the first and second particle's final velocity have the same value, v. Put these values in place of the preceding expression:

1/2m1v1^2i  = 1/2m1v1^2 + 1/2m2v2^2 +ke q1q2/rf

After solving we get,

rf = 2ke q1q2 / m1v1^2 - (m1+m2)v^2

Substituting the values we get,

rf = 3.64m

(c)

v1f = (m1-m2 / m1 + m2) v1i

v1f  = -9i m/s

(d)

v2f =  (2m1/ m1 +m2) v1i

After substituting the values,

v2f = 12i m/ s

Question :

Review. From a large distance away, a particle of mass 2.00 g and charge 15.0 \muμC is fired at 21.0 m/s straight toward a second particle, originally stationary but free to move, with mass 5.00 g and charge 8.50 \muμC. Both particles are constrained to move only along the x axis. (a) At the instant of closest approach, both particles will be moving at the same velocity. Find this velocity. (b) Find the distance of closest approach. After the interaction, the particles will move far apart again. At this time, find the velocity of (c) the 2.00-g particle and (d) the 5.00-g particle. \hat{i}

To learn more about  momentum conservation law click on the link below:

brainly.com/question/7538238

#SPJ4

5 0
2 years ago
A force of 2N will stretch a rubber band 0.02m. Assuming that Hooke's Law applies, answer the following: How far will a 1600N fo
denis-greek [22]
Hooke's Law states that the extension is directly proportional to the force applied so:
F/x = constant

F₁/x₁ = F₂/x₂
2 / 0.02 = 1600 / x₂
x₂ = 16 m

Elastic work = 1/2 Fx
= 1/2 * 1600 * 16
= 12.8 kJ
7 0
3 years ago
Other questions:
  • What is a locus of points
    13·2 answers
  • In the absence of air resistance and friction, what will happen to the velocity of an object going at 20 m/s E?
    12·1 answer
  • Which two statements are true of electromagnetic waves?
    11·1 answer
  • Which change increases the electric force between objects?
    5·2 answers
  • What is the final step in the fourth stage of technological design, after a product has been improved and approved?
    7·1 answer
  • A flywheel flows from 250rpm to 150rpm in 4.2 seconds. How many revolutions occur during this time ​
    5·1 answer
  • 7. Two objects in thermal equilibrium have -
    9·1 answer
  • Qué es el movimiento
    11·2 answers
  • Which two statements about redox reactions are true? HELP ASAP!!!!
    6·1 answer
  • Momentum is conserved it can be transferred but not lost. true or false​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!