Answer:
1) The value of Kc:
C. remains the same.
2) The value of Qc:
A. is greater than Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium.
4) The concentration of N2 will:
B. decrease.
Explanation:
Hello,
In this case, by means of the Le Chatelier's principle which is based on the shift a chemical reaction could have under some modifications, we have:
1) The value of Kc:
C. remains the same, since it just depend the reaction's thermodynamics as it is computed via:

2) The value of Qc:
A. is greater than Kc, since the reaction quotient is:
![Qc=\frac{[N_2][H_2]^3}{[NH_3]^2}](https://tex.z-dn.net/?f=Qc%3D%5Cfrac%7B%5BN_2%5D%5BH_2%5D%5E3%7D%7B%5BNH_3%5D%5E2%7D)
Thus, the lower the concentration of ammonia, the higher Qc, making Qc>Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium, since ammonia was withdrawn and should be regenerated to reach the equilibrium.
4) The concentration of N2 will:
B. decrease, since less reactant is forming the products.
Best regards.
Answer is: 4,4 grams <span>of carbon dioxide gas would be produced.
</span>Chemical reaction: CaCO₃ + 2HCl → CaCl₂ + CO₂ + H₂O.
m(CaCO₃) = 10 g.
n(CaCO₃) = 10 g ÷ 100 g/mol.
n(CaCO₃) = 0,1 mol.
From chemical reaction: n(CaCO₃) : n(CO₂) = 1 : 1.
n(CO₂) = 0,1 mol.
m(CO₂) = n(CO₂) · M(CO₂).
m(CO₂) = 0,1 mol· 44 g/mol.
m(CO₂) = 4,4 g.
Ur average speed increases bc ur moving faster
Electronic configuration of cromium is
Cr-[Ar]4s¹3d⁵
When cromium loses two electrons it becomes Cr⁺².
So its electronic configuration becomes,
Cr⁺²-[Ar]3d⁴
One electron will go from 4s orbital and one electron will go from 3d orbital.
So the answer here is D. [Ar]3d⁴ -because after losing 2 electrons electronic configuration of cromium becomes [Ar] 3d⁴.
Answer:
The 2.8 hrs one i think???
hope this helps
Explanation: