The empirical formula is K₂O.
The empirical formula is the <em>simplest whole-number ratio</em> of atoms in a compound.
The <em>ratio of atom</em>s is the same as the <em>ratio of moles</em>.
So, our job is to calculate the <em>molar ratio</em> of K to O.
Step 1. Calculate the <em>moles of each element
</em>
Moles of K = 32.1 g K × (1 mol K/(39.10 g K =) = 0.8210 mol K
Moles of O = 6.57 g O × (1 mol O/16.00 g O) = 0.4106 mol 0
Step 2. Calculate the <em>molar ratio of each elemen</em>t
Divide each number by the smallest number of moles and round off to an integer
K:O = 0.8210:0.4106 = 1.999:1 ≈ 2:1
Step 3: Write the <em>empirical formula
</em>
EF = K₂O
Answer:
The 12L helium tank pressurized to 160 atm will fill <em>636 </em>3-liter balloons
Explanation:
It is possible to answer this question using Boyle's law:

Where P₁ is the pressure of the tank (160atm), V₁ is the volume of the tank (12L), P₂ is the pressure of the balloons (1atm, atmospheric pressure) And V₂ is the volume this gas will occupy at 1 atm, thus:
160atm×12L = 1atm×V₂
V₂ = 1920L
As the tank will never be empty, the volume of the gas able to fill balloons is the total volume minus 12L, thus the volume of helium able to fill balloons is:
1920L - 12L = 1908L
1908L will fill:
1908L×
= <em>636 balloons</em>
<em></em>
I hope it helps!
The coefficient for the chemical formula 3CO2 is the 3.
Answer for this question might be number 2
Answer:allow for greater chances for a sentinel event
Explanation: