1. 8+ x
2. 2 + x/2
3. x - 3 = 9
4. 2 - x
5. 5 + x
6. 4 - x
7. 7 - x
8. x - 5 + 25
The answer is f(x)=x²+2x when evaluated with -3 gives you the value of 3
Let's check all functions.
1. The function f(x)=x²<span>+2x when evaluated with 3 gives you the value of 3:
Evaluated with x means that</span> x = 3.
f(3) = 3² + 2 * 3 = 9 + 6 = 15
15 ≠ 3, so, this is not correct.
2. f(x)=x²<span>-3x when evaulated with -3 give you the value of 3
Evaluated with -3 means that x = -3.
(f-3) = (-3)</span>² - 3 * (-3) = 9 + 9 = 18
18 ≠ 3, so, this is not correct.
3. f(x)=x²<span>+2x when evaluated with -3 gives you the value of 3
</span> Evaluated with -3 means that x = -3.
f(-3) = (-3)² + 2 * (-3) = 9 - 6 = 3
3 = 3, so this is correct.
4. f(x)=x²-3x when evaluated with -3 gives you the value of 3
Evaluated with 3 means that x = 3.
f(3) = (3)² - 3 * 3 = 9 - 9 = 0
0 ≠ 3, so this is not correct.
Answer:
3
Step-by-step explanation:
The absolute value means spaces away from zero. -3 is 3 spaces away and 3 is also 3 spaces away. Hope this helps!
Hey, so u have to do 1/5 times 3/1 which is 3/5 and she has to read 2/5 more
Call the number of days 'd' and the number of miles 'm'.
(Original, eh ?)
Then the equation for Gamma's price is
Price-G = 30.39d + 0.55m
and the equation for Delta's price is
Price-D = 50.31d + 0.43m .
We're going to set the prices equal, and find out
what the number of miles is:
Price-G = Price-D.
30.39d + 0.55m = 50.31d + 0.43m .
Before we go any farther, I'm going to assume that both cases would be
one-day rentals. My reasons: ==> the solution for the number of miles
depends on how many days each car was rented for; ==> even if both
cars are rented for the same number of days, the solution for the number
of miles depends on what that number of days is.
For 1-day rentals, d=1, and
30.39 + 0.55m = 50.31 + 0.43m .
Beautiful. Here we go.
Subtract 0.43m
from each side: 30.39 + 0.12m = 50.31
Subtract 30.39
from each side: 0.12m = 19.92
Divide each side by 0.12 : m = 166 .
There it is ! If a car is rented from Gamma for a day, and another car
is rented from Delta for a day, and both cars are driven 166 miles, then
the rental prices for both cars will be the same ... (namely $121.69)