This question involves the concepts of th magnetic field and current.
The magnetic field created by the current at the house is "6.75 x 10⁻⁷ T".
<h3>Magnetic Field</h3>
The magnetic field created by a current carrying wire can be given by the following formula:

where,
- B = magnetic field = ?
= permeabiliy of free space =4π x 10⁻⁷- I = current = 152 A
- r = distance = 45 m

B = 6.75 x 10⁻⁷ T
Learn more about magnetic field here:
brainly.com/question/23096032
#SPJ1
A pendulum is not a wave.
-- A pendulum doesn't have a 'wavelength'.
-- There's no way to define how many of its "waves" pass a point
every second.
-- Whatever you say is the speed of the pendulum, that speed
can only be true at one or two points in the pendulum's swing,
and it's different everywhere else in the swing.
-- The frequency of a pendulum depends only on the length
of the string from which it hangs.
If you take the given information and try to apply wave motion to it:
Wave speed = (wavelength) x (frequency)
Frequency = (speed) / (wavelength) ,
you would end up with
Frequency = (30 meter/sec) / (0.35 meter) = 85.7 Hz
Have you ever seen anything that could be described as
a pendulum, swinging or even wiggling back and forth
85 times every second ? ! ? That's pretty absurd.
This math is not applicable to the pendulum.
<span>Resistance of automobile light is equal to 12 ohms.
</span>Resistance = Voltage / Current
where
Voltage = 12 volts
Current = 1.0 Amperes
Resistance = 12 volts/ 1.0 amperes
Resistance = 12 ohms.
Automobile light has 12 ohms resistance when it is connected to 12volts battery with 1.0 ampere current.
Answer:
4
Explanation:
friction
weight
normal reaction
force to overcome inertia
The frequency of the wave is 132 Hz
Explanation:
To calculate the speed of the wave, we can use the following formula:

where
d is the distance travelled by the wave
t is the time elapsed
For the sound wave in this problem, we have:
d = 660 m is the distance travelled
t = 2 s is the time interval considered
Substituting and solving for v, we find the speed of the sound wave:

Now we can calculate the frequency of the wave by using the wave equation:

where
v = 330 m/s is the speed of the wave
is the wavelength
f is the frequency
Solving for f, we find:

Learn more about wavelength and frequency:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly