P=30 kg•m/s. This will be your correct answer.
Answer:
a
The number of radians turned by the wheel in 2s is 
b
The angular acceleration is 
Explanation:
The angular velocity is given as

Now generally the integral of angular velocity gives angular displacement
So integrating the equation of angular velocity through the limit 0 to 2 will gives us the angular displacement for 2 sec
This is mathematically evaluated as

![= [\frac{2t^2}{2} + \frac{t^4}{4}] \left\{ 2} \atop {0}} \right.](https://tex.z-dn.net/?f=%3D%20%5B%5Cfrac%7B2t%5E2%7D%7B2%7D%20%2B%20%5Cfrac%7Bt%5E4%7D%7B4%7D%5D%20%5Cleft%5C%7B%202%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![= [\frac{2(2^2)}{2} + \frac{2^4}{4}] - 0](https://tex.z-dn.net/?f=%3D%20%5B%5Cfrac%7B2%282%5E2%29%7D%7B2%7D%20%2B%20%5Cfrac%7B2%5E4%7D%7B4%7D%5D%20-%200)


Now generally the derivative of angular velocity gives angular acceleration
So the value of the derivative of angular velocity equation at t= 2 gives us the angular acceleration
This is mathematically evaluated as

so at t=2


(a) 6.04 rev/s
The speed of the ball is given by:

where
is the angular speed
r is the distance of the ball from the centre of the circle
In situation 1), we have

r = 0.600 m
So the speed of the ball is

In situation 2), we have

r = 0.900 m
So the speed of the ball is

So, the ball has greater speed when rotating at 6.04 rev/s.
(b) 
The centripetal acceleration of the ball is given by

where
v is the speed
r is the distance of the ball from the centre of the trajectory
For situation 1),
v = 30.6 m/s
r = 0.600 m
So the centripetal acceleration is

(c) 
For situation 2 we have
v = 34.1 m/s
r = 0.900 m
So the centripetal acceleration is

Answer: Molecules of H202, H20 and 02 are still forming. ( A P E X )
Explanation: I know this is late but for anyone looking at this later
Answer:
bend toward the normal line
Explanation:
When light passes from a less dense to a more dense substance, (for example passing from air into water), the light is refracted (or bent) towards the normal. In your question the light is moving from rarer to denser medium