<span>explain why the dissolved component does not settle out of a solution -
</span><span>Before saturation, there are attractive forces between solute and solvent. after saturation, the capacity for the attractive forces is reached and no more solute can be dissolved</span>
First, we calculate of the concentration of the H+ ions in the solution from the pH given. Then, calculate the new concentration after dilution. Calculation are as follows:
pH = -log[H+]
5 = -log[H+]
[H+] = 1 x 10^-5 M
M1V1 = M2V2
<span>1 x 10^-5 M (V1) = M2(100V1)
</span>M2 = 1 x 10^-7
pH = -log[<span>1 x 10^-7</span>]
pH = 7
What occurs is they neutralize both acid and base characteristics/features, usually producing a salt.
Hope this shells!
<h3>
Answer:</h3>
The centripetal acceleration is 26.38 m/s²
<h3>
Explanation:</h3>
We are given;
- Mass of rubber stopper = 13 g
- Length of the string(radius) = 0.93 m
- Time for one revolution = 1.18 seconds
We are required to calculate the centripetal acceleration.
To get the centripetal acceleration is given by the formula;
Centripetal acc = V²/r
Where, V is the velocity and r is the radius.
Since time for 1 revolution is 1.18 seconds,
Then, V = 2πr/t, taking π to be 3.142 ( 1 revolution = 2πr)
Therefore;
Velocity = (2 × 3.142 × 0.93 m) ÷ 1.18 sec
= 4.953 m/s
Thus;
Centripetal acceleration = (4.953 m/s)² ÷ 0.93 m
= 26.38 m/s²
Hence, the centripetal acceleration is 26.38 m/s²
Answer:
A - Liquid molecules forming a gas and gas molecules forming a
liquid are equal in number.
Explanation:
A P E X