Answer:
893 moles
Explanation:
An ideal gas at STP occupies 22.4 liters. Calculating Oxygen as if it were an ideal gas there are . 893 moles of Oxygen in 20.0 liters.
Answer:
Water has the greatest ΔEN
ΔEN H₂O → 3.4 - 2.1 = 1.3 Option D.
Explanation:
We should find the Electronegativity data in the Periodic table for all the elements:
C : 2.6
O: 3.4
H: 2.1
S: 2.6
N: 3.0
a. ΔEN CO₂ → 3.4 - 2.6 = 0.4
b. ΔEN H₂S → 2.6 - 2.1 = 0.5
c. ΔEN NH₃ → 3 - 2.1= 0.9
d. ΔEN H₂O → 3.4 - 2.1 = 1.3
Answer:
Gravitational force of attraction.
Explanation:
When two bodies of masses 'm' and 'M' are separated by a distance 'r', then both the bodies experience a force of attraction towards each other. This force of attraction is called gravitational force. It is a weak force but it always act between two bodies that have mass.
The magnitude of the gravitational force is directly proportional to product of the masses and inversely proportional to the square of the distance between the masses.
This means that as the distance between the bodies is increases, the gravitational force between the bodies decreases and vice versa.
The gravitational force of attraction is given as:

False, in an exothermic reaction, an increase in temperature does not favor the formation of products. Instead, it favors the backward reaction. An exothermic reaction is a reaction where energy is transferred from the system out to the environment.
Answer:
The particles must be in the correct orientation upon impact.
The particles must collide with enough energy to meet the activation energy of the reaction.
Explanation:
This a problem related to chemical kinetics. The collision theory is one of the theories of reaction rates and it perfectly explains how the effectiveness of colliding molecules dictates the pace of a reaction.
For reactions to occur, there must be collisions between reacting particles. It implies that the collision per unit time and how successful collisions are determines the rate of chemical reactions in most cases. Therefore, for a collision to be successful, colliding particle must have enough energy which is greater than the activation energy of the reaction. In order to also produce the desired products, the colliding particles must be properly oriented.