Answer:
Vx = 35.31 [km/h]
Vy = 18.77 [km/h]
Explanation:
In order to solve this problem, we must decompose the velocity component by means of the angle of 28° using the cosine function of the angle.
![v_{x} = 40*cos(28)\\V_{x} = 35.31 [km/h]](https://tex.z-dn.net/?f=v_%7Bx%7D%20%3D%2040%2Acos%2828%29%5C%5CV_%7Bx%7D%20%3D%2035.31%20%5Bkm%2Fh%5D)
In order to find the vertical component, we must use the sine function of the angle.
![V_{y}=40*sin(28)\\V_{y} = 18.77 [km/h]](https://tex.z-dn.net/?f=V_%7By%7D%3D40%2Asin%2828%29%5C%5CV_%7By%7D%20%3D%2018.77%20%5Bkm%2Fh%5D)
Answer:
F=BILsin90 when perpendicular sin90 =1 30T x50x30 so you can get 45000N
Answer:
It cancels recoil.
Explanation:
For each action there is an equal an opposite reaction.
The principle of conservation of momentum tell us that if a single spore were ejected the fern would suffer a recoil from it. This recoil would take energy and speed from the spore. But if they are ejected in pairs the recoil is canceled and all the energy is transferred to the spores resulting in higher speeds.
Amplitude: the height of the wave<span>, measured in meters
</span><span>Wavelength: the distance between adjacent crests, measured in meters
</span>
According to the Work-Energy Theorem, the work done on an object is equal to the change in the kinetic energy of the object:

Since the car ends with a kinetic energy of 0J (because it stops), then the work needed to stop the car is equal to the initial kinetic energy of the car:

Replace m=1100kg and v=112km/h. Write the speed in m/s. Remember that 1m/s = 3.6km/h:

Therefore, the answer is: 532,346 J.