According to the universal law of gravitation, all particles attract every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. So the answer here would be,
a. everything has a gravitational force because everything has mass.
Basically velocity is a vector quantity and is specified in m/s (meters/second). Speed is the distance traveled by an object where as, velocity is distance traveled by an object per unit time in a particular direction. Speed is a scalar quantity where as velocity is a vector quantity
Answer:
Ans. B) 22 m/s (the closest to what I have which was 20.16 m/s)
Explanation:
Hi, well, first, we have to find the equations for both, the driver and the van. The first one is moving with constant acceleration (a=-2m/s^2) and the van has no acceletation. Let´s write down both formulas so we can solve this problem.


or by rearanging the drivers equation.

Now that we have this, let´s equal both equations so we can tell the moment in which both cars crashed.




To solve this equation we use the following formulas


Where a=1; b=-28.75; c=154
So we get:


At this point, both answers could seem possible, but let´s find the speed of the driver and see if one of them seems ilogic.
}


This means that 21.63s will outcome into a negative speed, for that reason we will not use the value of 21.63s, we use 7.12s and if so, the speed of the driver when he/she hits the van is 20.16m/s, which is closer to answer A).
Best of luck
Answer:
Required heat Q = 11,978 KJ
Explanation:
Given:
Mass = 5.3 kg
Latent heat of vaporization of water = 2,260 KJ / KG
Find:
Required heat Q
Computation:
Required heat Q = Mass x Latent heat of vaporization of water
Required heat Q = 5.3 x 2260
Required heat Q = 11,978 KJ
Required heat Q = 12,000 KJ (Approx.)