Answer:
If you have a quantity X of a substance, with a decay constant r, then the equation that tells you the amount of substance that you have, at a time t, is:
C(t) = X*e^(-r*t)
Now, we know that:
We have 2000g of substance A, and it has a decay constant of 0.03 (i assume that is in 1/year because the question asks in years)
And we have 3000 grams of substance B, with a decay constant of 0.05.
Then the equations for both of them will be:
Ca = 2000g*e^(-0.03*t)
Cb = 3000g*e^(-0.05*t)
Where t is in years.
We want to find the value of t such that Ca = Cb.
So we need to solve:
2000g*e^(-0.03*t) = 3000g*e^(-0.05*t)
e^(-0.03*t) = (3/2)e^(-0.05*t)
e^(-0.03*t)/e^(-0.05*t) = 3/2
e^(t*(0.05 - 0.03)) = 3/2
e^(t*0.02) = 3/2
Now we can apply Ln(x) to both sides, and get:
Ln(e^(t*0.02)) = Ln(3/2)
t*0.02 = Ln(3/2)
t = Ln(3/2)/0.02 = 20.3
Then after 20.3 years, both substances will have the same mass.
Answer:
It is a mixture of the two.
Step-by-step explanation:
Standard form would be 70,000
Word form would be seventy thousand
Answer:
A virus is a D) intracellular parasite.
Answer:
Time = 133.3 secs
Step-by-step explanation:
<u><em>Speed = Distance / Time</em></u>
<em>Rearranging the formula</em>
Time = Distance / Speed
Where D = 200 m , S = 1.5 m/s
Time = 200 / 1.5
Time = 133.3 secs
x =14
Answer:
Step-by-step explanation:
11. By inscribed angle theorem:
12. Again by inscribed angle theorem: