Answer:
-23
Step-by-step explanation:
As I increases by 18, y decreases by 12. From the last value in the table, I needs to increase by 2·18 for it to become zero. Hence the y-intercept will be 2·12 less than the last value in the table:
1 - 2·12 = -23 . . . the y-intercept
Start with 180.
<span>Is 180 divisible by 2? Yes, so write "2" as one of the prime factors, and then work with the quotient, 90. </span>
<span>Is 90 divisible by 2? Yes, so write "2" (again) as another prime factor, then work with the quotient, 45. </span>
<span>Is 45 divisible by 2? No, so try a bigger divisor. </span>
<span>Is 45 divisible by 3? Yes, so write "3" as a prime factor, then work with the quotient, 15 </span>
<span>Is 15 divisible by 3? [Note: no need to revert to "2", because we've already divided out all the 2's] Yes, so write "3" (again) as a prime factor, then work with the quotient, 5. </span>
<span>Is 5 divisible by 3? No, so try a bigger divisor. </span>
Is 5 divisible by 4? No, so try a bigger divisor (actually, we know it can't be divisible by 4 becase it's not divisible by 2)
<span>Is 5 divisible by 5? Yes, so write "5" as a prime factor, then work with the quotient, 1 </span>
<span>Once you end up with a quotient of "1" you're done. </span>
<span>In this case, you should have written down, "2 * 2 * 3 * 3 * 5"</span>
Answer:
The first term is 42.
Step-by-step explanation:
The common difference is 142 - 140 = 2 so we have
50th term = a1 + 2(50 -1) = 140 where a1 is the first term
a1 + 98 = 140
a1 = 140 - 98 = 42.
<span>n = 5
The formula for the confidence interval (CI) is
CI = m ± z*d/sqrt(n)
where
CI = confidence interval
m = mean
z = z value in standard normal table for desired confidence
n = number of samples
Since we want a 95% confidence interval, we need to divide that in half to get
95/2 = 47.5
Looking up 0.475 in a standard normal table gives us a z value of 1.96
Since we want the margin of error to be ± 0.0001, we want the expression ± z*d/sqrt(n) to also be ± 0.0001. And to simplify things, we can omit the ± and use the formula
0.0001 = z*d/sqrt(n)
Substitute the value z that we looked up, and get
0.0001 = 1.96*d/sqrt(n)
Substitute the standard deviation that we were given and
0.0001 = 1.96*0.001/sqrt(n)
0.0001 = 0.00196/sqrt(n)
Solve for n
0.0001*sqrt(n) = 0.00196
sqrt(n) = 19.6
n = 4.427188724
Since you can't have a fractional value for n, then n should be at least 5 for a 95% confidence interval that the measured mean is within 0.0001 grams of the correct mass.</span>
f(x) cannot be 0 or less than zero, but can approach+ infinity
Answer is (0, ∞)