Scientific form = 6.5 x 109.
Answer:
Isotopes can both be the same element but have a different number of electrons
Explanation: not sure if more was supposed to be there, but i tried
Answer:A air
Explanation:Of the three mediums (gas, liquid, and solid) sound waves travel the slowest through gases, faster through liquids, and fastest through solids. Temperature also affects the speed of sound.
Hope this helps you out ツ
Answer:
Most of the oxygen in the atmosphere is in the form of O2, which means it is made up of molecules containing two oxygen atoms. Ozone, however is O3, which means it is made up of molecules containing three oxygen atoms. O2 is what we breath, and what plants release from photosynthesis. Ozone occurs naturally high in the stratosphere, where it absorbs ultraviolet light, protecting us here on the surface from skin cancer. Ozone can also occur closer to the surface of the earth as a pollutant. It is formed from reactions with O2 and chemicals emitted from factories and cars. It comes in the form of smog.
So in general:
Oxygen (O2): Essential to human life
Ozone (O3) in the stratosphere: essential to protecting life on earth
Ozone (O3) on the surface of the earth: toxic to human life, caused by pollution
Answer:
True.
Explanation:
A diode, which allows current to flow in one direction only, consists of two types of semiconductors joined together.
A semiconductor can be defined as a crystalline solid substance that has its conductivity lying between that of a metal and an insulator, due to the effects of temperature or an addition of an impurity. Semiconductors are classified into two main categories;
1. Extrinsic semiconductor.
2. Intrinsic semiconductor.
An intrinsic semiconductor is a crystalline solid substance that is in its purest form and having no impurities added to it. Examples of intrinsic semiconductor are Germanium and Silicon.
In an intrinsic semiconductor, the number of free electrons is equal to the number of holes. Also, in an intrinsic semiconductor the number of holes and free electrons is directly proportional to the temperature; as the temperature increases, the number of holes and free electrons increases and vice-versa.
In an intrinsic semiconductor, each free electrons (valence electrons) produces a covalent bond.