Hey! So referring to the data the thing we can clearly see is that in a vacuum, everything, regardless of its mass, falls at the same speed.
Acceleration is often confused with speed, or velocity, but the difference is, acceleration by definition is the rate of which an object falls with respect to its mass and time.
Every single thing in the world falls at the same acceleration, this is because of gravity. The difference is the speed of which it falls. In space, there is not any gravity, and so, the objects are able to fall at the same speed regardless of their mass.
Answer:
Dynamic flexibility
Explanation:
Dynamic flexibility can be generally defined as the ability of the body muscles and joints to move in full range of motion. High flexibility in these joints and muscles leads to the decreasing pain and injury in different parts of the body.
Proper warm up exercises are needed to be carried out that involves both the combination of controlling movements and stretching of the body, and this directly enhances the dynamic flexibility of the body.
The athletes and sports persons possesses a good dynamic flexibility of their body as they carry our different types of body exercises.
Answer:
215955.06 m/s^2
Explanation:
length of barrel, s = 0.89 m
initial velocity of the bullet, u = 0 m/s
Final velocity of the bullet, v = 620 m/s
Let a be the acceleration of the bullet in the barrel
Use third equation of motion, we get


a = 215955.06 m/s^2
Thus, the acceleration of the bullet inside the barrel is 215955.06 m/s^2.
<span>Acceleration is the change in velocity divided by time.
We can find acceleration a, by the following formula
a=v-u/t
where,
v is the final velocity (in this question v=8.0 m/s)
u is the initial velocity (since the hamster starts from rest, u=0)
t is the time taken (i,e 3.0 second)
now by applying the formula we have,
a = 8.0 - 0 / 3
= 8 / 3
= 2.65 m/s</span>²<span>
The acceleration is 2.65 meters per second squared</span>