Answer:
When a man travels from Hilly region to Terai region, his weight gradually increases because the value of g is more at the Terai region than that in hilly region. 3. An object weights 20 N in air and 16 N in liquid, then answer the following questions.
Explanation:
because the value of g is more at the Terai region than that in hilly region. 3. An object weights 20 N in air and 16 N in liquid, then answer the following questions.
Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89
Answer:
Point a
Explanation:
The potential energy of an object is given by :
P = mgh
m is mass, g is acceleration due to gravity, h is height above ground level.
Potential energy is directly proportional to the position of an object.
In the attached figure, the maximum height is shown at point (a). It means it will have maximum potential energy at a as compared to b,c and d.
The velocity of tennis racket after collision is 14.96m/s
<u>Explanation:</u>
Given-
Mass, m = 0.311kg
u1 = 30.3m/s
m2 = 0.057kg
u2 = 19.2m/s
Since m2 is moving in opposite direction, u2 = -19.2m/s
Velocity of m1 after collision = ?
Let the velocity of m1 after collision be v
After collision the momentum is conserved.
Therefore,
m1u1 - m2u2 = m1v1 + m2v2


Therefore, the velocity of tennis racket after collision is 14.96m/s
The rms current in the transmission lines is I = 487.18 A.
The root-imply-rectangular (rms) voltage of a sinusoidal supply of electromotive force is used to represent the source. it is the rectangular root of the time average of the voltage squared.
Alternating-present day circuits. the root-imply-square (rms) voltage of a sinusoidal source of electromotive force is used to symbolize the supply. it's far the square root of the time average of the voltage squared.
Electric power is by using present day or the waft of electric fee and voltage or the capacity of rate to deliver electricity. A given cost of power can be produced by using any combination of contemporary and voltage values
power = 38 M watt
rms voltage = 78 K v
power = IV
I = power/V
I = (38 * 1000000)/78*1000
I = 487.18 A.
Learn more about rms current here:-brainly.com/question/20913680
#SPJ4