a). Perihelion . . . the point in Earth's orbit that's closest to the Sun.
We pass it every year early in January.
b). Aphelion . . . the point in Earth's orbit that's farthest from the Sun.
We pass it every year early in July.
c). Proxihelion . . . a made-up, meaningless word
d). Equinox . . . the points on the map of the stars where the Sun
appears to be on March 21 and September 21.
Answer:
Approximately
, assuming that the acceleration of this ball is constant during the descent.
Explanation:
Assume that the acceleration of this ball,
, is constant during the entire descent.
Let
denote the displacement of this ball and let
denote the duration of the descent. The SUVAT equation
would apply.
Rearrange this equation to find an expression for the acceleration,
, of this ball:
.
Note that
and
in this question. Thus:
.
Let
denote the mass of this ball. By Newton's Second Law of Motion, if the acceleration of this ball is
, the net external force on this ball would be
.
Since
and
, the net external force on this ball would be:
.
Because they built:different
Answer:
The average current is 19.567 A
Solution:
As per the question:
Charge, Q = 
Time, t = 
Now,
We know that current is constituted by the rate of transfer of the charge per unit time. Thus we can write:
I =
(1)
Now, the charge that was transferred is 86 % of the original value.
Therefore,
We replace Q by 0.86Q in eqn (1):
I = 