We generally use circuit breaker to avoid short circuit in the circuit.
At a point on the streamline, Bernoulli's equation is
p/ρ + v²/(2g) = constant
where
p = pressure
v = velocity
ρ = density of air, 0.075 lb/ft³ (standard conditions)
g = 32 ft/s²
Point 1:
p₁ = 2.0 lb/in² = 2*144 = 288 lb/ft²
v₁ = 150 ft/s
Point 2 (stagnation):
At the stagnation point, the velocity is zero.
The density remains constant.
Let p₂ = pressure at the stagnation point.
Then,
p₂ = ρ(p₁/ρ + v₁²/(2g))
p₂ = (288 lb/ft²) + [(0.075 lb/ft³)*(150 ft/s)²]/[2*(32 ft/s²)
= 314.37 lb/ft²
= 314.37/144 = 2.18 lb/in²
Answer: 2.2 psi
¿Es esta una pregunta verdadera o falsa? Por cierto, no hay mucha gente que hable español en esta aplicación, así que buena suerte.
Answer:
D is the correct answer
Explanation:
A) shows low accuracy and high precision since they missed the bull's-eye but are all grouped together.
B) Shows high accuracy and high precision
C) Shows high precision
D is the only one that shows both low accuracy and low precision
Answer:
If the two waves have the same amplitude and wavelength, then they alternate between ... In fact, the waves are in phase at any integer multiple of half of a period: ... The propagation velocity of the waves is 175 m/s.
Explanation:
please ask me in brainlist ok