Answer: the constant angular velocity of the arms is 86.1883 rad/sec
Explanation:
First we calculate the linear velocity of the single sprinkler;
Area of the nozzle = π/4 × d²
given that d = 8mm = 8 × 10⁻³
Area of the nozzle = π/4 × (8 × 10⁻³)²
A = 5.024 × 10⁻⁵ m²
Now total discharge is dived into 4 jets so discharge for single jet will be;
Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec
So using continuity equation ;
Q_single = A × V_single
V_single = Q_single/A
we substitute
V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)
V_single = 29.8566 m/s
Now resolving the forces as shown in the second image,
Vt = Vcos30°
Vt = 29.8566 × cos30°
Vt = 25.8565 m/s
Finally we calculate the angular velocity;
Vt = rω
ω_single = Vt / r
from the given diagram, radius is 300mm = 0.3m
so we substitute
ω_single = 25.8565 / 0.3
ω_single = 86.1883 rad/sec
Therefore the constant angular velocity of the arms is 86.1883 rad/sec
Answer:
Xin lỗi, ở đây không có ai nói tiếng Việt, nhưng bạn có thể cuộn hết cỡ xuống dưới để tìm một trang web cho não biết nói tiếng Việt
Explanation:
This question is from quizlet.
So better check this question!
By definition, the speed of an object is given by:

Where,
dr/dt: derived from the position with respect to time
Therefore, speed has units of length over units of time.
Thus, speed is a derived quantity, since it depends on the value of two other quantities.
Answer:
a derived quantity is:
C. Speed
Displacement is d
Vf² = Vi² + 2 g d
(-20²) = (+10²) + 2 (-9.8) d
-19.6 d = 300
d = -15.3 m
negative means lower
time is t
d = Vi t + 1/2 g t²
-15.3 = 10 t + (-4.9) t²
4.9 t² - 10 t -15.3 = 0
t = 3.06 s
Hope this helps -John