Answer:
B. 25 feet
Explanation:
In most cities in US, passenger car brakes must stop a car moving at 20 miles per hour at 25 feet.
Therefore, the correct option is "B" 25 feet
To solve this problem it is necessary to apply the concepts related to gravity as an expression of a celestial body, as well as the use of concepts such as centripetal acceleration, angular velocity and period.
PART A) The expression to find the acceleration of the earth due to the gravity of another celestial body as the Moon is given by the equation
Where,
G = Gravitational Universal Constant
d = Distance
M = Mass
Radius earth center of mass
PART B) Using the same expression previously defined we can find the acceleration of the moon on the earth like this,
PART C) Centripetal acceleration can be found throughout the period and angular velocity, that is
At the same time we have that centripetal acceleration is given as
Replacing
Answer:
Answer:196 Joules
Explanation:
Hello
Note: I think the text in parentheses corresponds to another exercise, or this is incomplete, I will solve it with the first part of the problem
the work is the product of a force applied to a body and the displacement of the body in the direction of this force
assuming that the force goes in the same direction of the displacement, that is upwards
W=F*D (work, force,displacement)
the force necessary to move the object will be
Answer:196 Joules
I hope it helps
Answer: a switch can do A, B and E
Explanation:
Acceleration = force / mass.
A = 100/50 = 2 m/s^2 .