Explanation:
area=length(m) ×breadth(m) . The unit of area is expressed in terms of fundamental units m^2.thus it is derived unit
Answer:An inelastic collision is one in which the internal kinetic energy changes (it is not conserved). A collision in which the objects stick together is sometimes called perfectly inelastic because it reduces internal kinetic energy more than does any other type of inelastic collision.People sometimes think that objects must stick together in an inelastic collision. However, objects only stick together during a perfectly inelastic collision. Objects may also bounce off each other or explode apart, and the collision is still considered inelastic as long as kinetic energy is not conserved.
hope this helps have a nice day❤️
Explanation:
Answer:
331.28 K
Explanation:
To solve this problem, you need to know that the heat that the water at 373 K is equal to the heat that the water at 285 K gains.
First, we will asume that at the end of this process there won't be any water left in gaseous state.
The heat that the steam (H20(g)) loses is equal to the heat lost because the change of phase plus the heat lost because of the decrease in temperature:

The specific Heat c of water at 298K is 4.18 kJ/K*kg.
The latent heat cl of water is equal to 2257 kJ/kg.
The heat that the cold water gains is equal to heat necessary to increase its temperature to its final value:

Remember that in equilibrium, the final temperature of both bodies of water will be equal.
Then:

Velocity of the mass after 11 seconds = ( value of the gravitational acceleration) * ( time )
velocity = ( 9.81 m / s^2 ) ( 11)
velocity = 107.91 meters per second
Answer:
Newton’s Three Laws of Motion has a great impact.
Explanation:
Newton’s Three Laws of Motion has a great impact on the bowling game for the 2 students. When the student one throw ball to the student 2, the ball decrease its speed due to the gravity and opposing air. If these forces are removed from the system the ball will continue its motion till another force is applied on it. When the force applied to the ball it produces acceleration in the direction to the applied force. If the ball touches the ground it bounce back with equal force which is a reaction of the ground.