<u>Answers</u>
(a) 6.75 Joules.
(b) 5.27 m/s
(c) 0.75 Joules
<u>Explanation</u>
Kinetic energy is the energy possessed by a body in motion.
(a) its kinetic energy at A?
K.E = 1/2 mv²
= 1/2 × 0.54 × 5²
= 6.75 Joules.
(b) its speed at point B?
K.E = 1/2 mv²
7.5 = 1/2 × 0.54 × V²
V² = 7.5 ÷ 0.27
= 27.77778
V = √27.77778
= 5.27 m/s
(c) the total work done on the particle as it moves from A to B?
Work done = 7.5 - 6.75
= 0.75 Joules
Answer:
V=34.2 m/s
Explanation:
Given that
Height , h= 54 m
Horizontal distance , x = 35 m
Given that , the ball is thrown horizontally , therefore the initial vertical velocity will be zero.
In vertical direction :
We know that

Now by putting the values in the above equation we got


Assume 
Thus



We also know that



In horizontal direction :


Thus the resultant velocity


V=34.2 m/s
Therefore the velocity will be 34.2 m/s.
Answer:
When extra energy is added
Explanation:
When the ball is released from rest and swings back towards your face, it will only pass closer to the end of the nose as per the initial conditions. However, when extra energy is added to the ball, it strikes the nose since its velocity and heights are increased. Therefore, the only condition under which the ball hits your nose is when extra energy is added to the system.
Answer: An object undergoing uniform circular motion is moving
Explanation:
Answer:
0.95 seconds
Explanation:
t = Time taken
u = Initial velocity = 15 m/s
v = Final velocity
s = Displacement
a = Acceleration = 9.81 m/s² (downward positive, upward negative)
Time taken by the ball to reach the maximum height

Maximum height

Distance between maximum height of the ball and the branch is 11.47-7 = 4.46 m
So, the distance that will be covered on the way down is 4.46 m
Now
u = 0
s = 4.46

Time taken by the ball from the maximum height to the tree branch is 0.95 seconds.
Total time taken from the moment the ball is thrown to reach the tree branch is 1.52+0.95 = 2.47 seconds