I think c I’m not sure tho
<span>The forces of nature are phase forces.</span>
Answer:
Option C. 30 m
Explanation:
From the graph given in the question above,
At t = 1 s,
The displacement of the car is 10 m
At t = 4 s
The displacement of the car is 40 m
Thus, we can simply calculate the displacement of the car between t = 1 and t = 4 by calculating the difference in the displacement at the various time. This is illustrated below:
Displacement at t = 1 s (d1) = 10 m
Displacement at t= 4 s (d2) = 40
Displacement between t = 1 and t = 4 (ΔD) =?
ΔD = d2 – d1
ΔD = 40 – 10
ΔD = 30 m.
Therefore, the displacement of the car between t = 1 and t = 4 is 30 m.
Answer:
Ionization potential of C⁺⁵ is 489.6 eV.
Wavelength of the transition from n=3 to n=2 is 1.83 x 10⁻⁸ m.
Explanation:
The ionization potential of hydrogen like atoms is given by the relation :
.....(1)
Here <em>E</em> is ionization potential, <em>Z</em> is atomic number and <em>n</em> is the principal quantum number which represents the state of the atom.
In this problem, the ionization potential of Carbon atom is to determine.
So, substitute 6 for <em>Z</em> and 1 for <em>n</em> in the equation (1).
<em> E = </em>489.6 eV
The wavelength (λ) of the photon due to the transition of electrons in Hydrogen like atom is given by the relation :
......(2)
R is Rydberg constant, n₁ and n₂ are the transition states of the atom.
Substitute 6 for Z, 2 for n₁, 3 for n₂ and 1.09 x 10⁷ m⁻¹ for R in equation (2).
= 5.45 x 10⁷
λ = 1.83 x 10⁻⁸ m
Answer:
Explanation:
Given:
sides of the cube,
speed of the cube with respect to the observer,
Since the relative velocity of the object is relativistic, so there will be a length contraction according to the observer:
where:
observed length of the side along the direction of velocity
is the observed length of the cube edge only in the direction of the velocity due to relativistic effect of length contraction.
So the observed volume will be: