Explanation:
Work done is given by the product of force and displacement.
Case 1,
1. A boy lifts a 2-newton box 0.8 meters.
W = 2 N × 0.8 m = 1.6 J
2. A boy lifts a 5-newton box 0.8 meters.
W = 5 N × 0.8 m = 4 J
3. A boy lifts a 8-newton box 0.2 meters.
W = 8 N × 0.2 m = 1.6 J
4. A boy lifts a 10-newton box 0.2 meters.
W = 10 N × 0.2 m = 2 J
Out of the four options, in option (2) ''A boy lifts a 5-newton box 0.8 meters'', the work done is 4 J. Hence, the greatest work done is 4 J.
Answer:
The sound travelled 516 meters before bouncing off a cliff.
Explanation:
The sound is an example of mechanical wave, which means that it needs a medium to propagate itself at constant speed. The time needed to hear the echo is equal to twice the height of the canyon divided by the velocity of sound. In addition, the speed of sound through the air at a temperature of 20 ºC is approximately 344 meters per second. Then, the height of the canyon can be derived from the following kinematic formula:
(1)
Where:
- Height, measured in meters.
- Velocity of sound, measured in meters per second.
- Time, measured in seconds.
If we know that
and
, then the height of the canyon is:



The sound travelled 516 meters before bouncing off a cliff.
Answer: an earth wire and a fuse can protect an ipad with a metal casing because an earth wire is strong and a fuse is basically a force and if you put them together the work like really good
Explanation:
idk i was just guessing sorry
Answer:
The correct option is;
- 4x
Explanation:
From the inverse square law, as the distance from the source of a physical quantity increases, the intensity of the source is spread over an area proportional to the square of the distance of the object from the source
The inverse square law can be presented as follows;

As the distance, r, increases, the surface it covers also increases by the power of 2
Therefore, where the distance increases from r to 2·r, we have;
When, I, remain constant

The surface increases to 4·S by the inverse square law
Therefore, the correct option is 4 × x.
We can determine a planet's orbital period and separation from its star using any detection method. The transit method can yield sizes, whereas the astrometric and doppler approaches can provide minimum masses.
We can calculate average density by combining the transit and doppler approaches. Numerous physical properties, including the semi-major axis, stellar mass, star radius, planet radius, eccentricity, and inclination, are calculated from these observable data. The mass of the planet is also calculated using the star's combined radial velocity readings.
List briefly the planetary characteristics that, in theory, can be detected with the present detection techniques. We can determine a planet's orbital period and separation from its star using any detection method. The transit method can yield sizes, whereas the astrometric and doppler approaches can provide minimum masses.
To know more about orbital period
brainly.com/question/28068951
#SPJ4