a = ( V2 - V1)/( t2 - t1)
3.2 = ( 23.5m/s - 15.2m/s)/(t - 0)
3.2m/s = 8.3/t
t(3.2) = 8.3
t = 8.3/3.2
t = 2.59 seconds
Given:
m = 555 g, the mass of water in the calorimeter
ΔT = 39.5 - 20.5 = 19 °C, temperature change
c = 4.18 J/(°C-g), specific heat of water
Assume that all generated heat goes into heating the water.
Then the energy released is
Q = mcΔT
= (555 g)*(4.18 J/(°C-g)*(19 °C)
= 44,078.1 J
= 44,100 J (approximately)
Answer: 44,100 J
I only know P and V and P is pressure and V is volume
The particular temperature at which vaporisation occurs is known as the boiling point of liquid. Volume of water increases when it boils at 100° C. 1 cm3 of water at 100 ° C becomes 1760 cm3 of steam at 100 ° C.
Hope it helps!!!!!!!!!!!!!!!!!!!!! ~~~~~~~~~~~~~~~~~~~
ಥ‿ಥ
The fundamental frequency of one of the organ pipes will go up or increase.
When pressured air is forced into an organ pipe, it echoes at a particular pitch, generating the sound of the pipe organ. Each pipe has been adjusted to a particular pitch on the musical scale.
A musical instrument called an outdoor pipe organ is used to perform music. It produces some calming tones and has a really serene sound. The organ pipe produces the sound of the outdoor organ. The wavelength of the sound is also dependent on the length of the pipe. The fundamental frequency of one of the organ pipes will grow as the speed of the sound increases as the ambient air temperature rises.
The correct option is (c).
Learn more about frequency here:
brainly.com/question/254161
#SPJ4