Answer: a) 73.41 10^-12 F; b)4.83* 10^3 N/C; c) 3.66 *10^3 N/C
Explanation: To solve this problem we have to consider the following: The Capacity= Charge/Potential Difference
As we know the capacity is value that depend on the geometry of the capacitor, in our case two concentric spheres.
So Potential Difference between the spheres is given by:
ΔV=-
Where E = k*Q/ r^2
so we have 
then
Vb-Va=k*Q(1/b-1/a)=kQ (ab/b-a)
Finally using C=Q/ΔV=ab/(k(b-a))
To caclulate the electric firld we first obtain the charge
Q=ΔV*C=120 V*73.41 10^-12 F=8.8 10^-9 C
so E=KQ/r^2 for both values of r
r=12.8 cm ( in meters)
r2=14.7 cm
E(r1)=4.83* 10^3 N/C
E(r2)=3.66 *10^3 N/C
In physics, weight is a measure of the force exerted by gravity on a mass.
You probably know that you weigh less on the Moon than on Earth. For instance, if you weigh 100. pounds on Earth, you will weigh 16.6 pounds on the Moon. But, if your mass on Earth is 100 kg, your mass on the Moon is... also 100 kg. Because the amount of matter you have does not change from the Earth to the Moon, but the gravitational force on the Earth is stronger than on the Moon, so you weigh more on Earth.
You can think of gravity pulling a mass toward the center of an object like the Earth. It pulls a lot harder for more massive objects like the Earth than for the Moon. That's why there's a difference in weight.
As a caveat, adding energy or mass to an object will affect its mass. Additionally, general relativity informs us that when something as traveling very near the speed of light, the whole idea of mass equivalency is not exactly true...
E) No. Ollie will shine for 30 Billion years but is only 10,000 LY from Earth.
F) No. Cosmo will shine for 3 Million years but is 10 Billion LY from Earth.
G) Yes. Ollie is only 10.000 LY away but will shine for 30 Billion years.
Ga) No. Stars such as Cosmo shine for 3 Million years.
Gb) If Cosmo was also 3 Million LY away we would see it now.
Answer: 83.3 W
Explanation: I think, I’m not sure. If I’m wrong correct me ;)
C) In the absence of an unbalanced force, an object at rest will stay at rest and an object in motion will stay in motion.
hope this helps and have a great day :)