Answer:
The majority of the weight in an atom is found in the nucleus.
Explanation:
The protons and neutrons that make up the nucleus of the atom may take up a tiny amount of space in comparison to the rest of the atom, but they are far more dense than the electrons that orbit the nucleus.
Most rocks that we encounter in our normal everyday lives are sedimentary rocks. Sedimentary rocks are rocks that have been worn down gradually over long periods of time. Because it takes very long periods of time (couple decades) for these rocks to change, it often seems as if they don't change at all, when in reality the change is too small for us to realize it!
Answer:
0.297 °C
Step-by-step explanation:
The formula for the <em>freezing point depression </em>ΔT_f is
ΔT_f = iK_f·b
i is the van’t Hoff factor: the number of moles of particles you get from a solute.
For glucose,
glucose(s) ⟶ glucose(aq)
1 mole glucose ⟶ 1 mol particles i = 1
Data:
Mass of glucose = 10.20 g
Mass of water = 355 g
ΔT_f = 1.86 °C·kg·mol⁻¹
Calculations:
(a) <em>Moles of glucose
</em>
n = 10.20 g × (1 mol/180.16 g)
= 0.056 62 mol
(b) <em>Kilograms of water
</em>
m = 355 g × (1 kg/1000 g)
= 0.355 kg
(c) <em>Molal concentration
</em>
b = moles of solute/kilograms of solvent
= 0.056 62 mol/0.355 kg
= 0.1595 mol·kg⁻¹
(d) <em>Freezing point depression
</em>
ΔT_f = 1 × 1.86 × 0.1595
= 0.297 °C
Answer:
1.7 bar
Explanation:
We can use the <em>Ideal Gas Law</em> to calculate the individual gas pressure.
pV = nRT Divide both sides by V
p = (nRT)/V
Data: n = 1.7 × 10⁶ mol
R = 0.083 14 bar·L·K⁻¹mol⁻¹
T = 22 °C
V = 2.5 × 10⁷ L
Calculations:
(a) <em>Change the temperature to kelvins
</em>
T = (22 + 273.15) K
= 295.15 K
(b) Calculate the pressure
p = (1.7 × 10⁶ × 0.083 14 × 295.15)/(2.5× 10⁷)
= 1.7 bar
H H
I I
H - C - C - H
l l
H H
A Carbon can only form 4 bonds and a Hydrogen can only form 1 bond.