THat would be A , B, C and E
Answer:
A. x=2, y = 7.
B. (2, 7).
Step-by-step explanation:
A. You can eliminate y by subtracting the equations:
y = 8x - 9
y = 4x - 1 Subtract:
0 = 4x - 8
4x = 8
x = 8/4 = 2.
Now substitute for x in the first equation:
y = 8(2) - 9 = 7.
Check in the second equation:
y = 4x - 1
7 = 4(2) - 1 = 7. Check is OK.
B. On the graph they will intersect at the point (2, 7).
They will intersect here because the values x=2 and y=7 satisfy both the 2 equations.
Answer:
no
Step-by-step explanation:
A proportional relationship must go through (0,0)
c=7n+2
0 = 7(0) +2
0 = 2
This is not true so it is not a proportional relationship
For this case we must simplify the following expression:
![\sqrt [3] {64 * a ^ 6 * b ^ 7 * c ^ 9}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B64%20%2A%20a%20%5E%206%20%2A%20b%20%5E%207%20%2A%20c%20%5E%209%7D)
We rewrite:

So:
![\sqrt [3] {4 ^ 3 * (a ^ 2) ^ 3 * (b ^ 2) ^ 3 * b * (c ^ 3) ^ 3} =\\\sqrt [3] {4 * a ^ 2 * b ^ 2 * c ^ 3) ^ 3 * b} =](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B4%20%5E%203%20%2A%20%28a%20%5E%202%29%20%5E%203%20%2A%20%28b%20%5E%202%29%20%5E%203%20%2A%20b%20%2A%20%28c%20%5E%203%29%20%5E%203%7D%20%3D%5C%5C%5Csqrt%20%5B3%5D%20%7B4%20%2A%20a%20%5E%202%20%2A%20b%20%5E%202%20%2A%20c%20%5E%203%29%20%5E%203%20%2A%20b%7D%20%3D)
By definition of properties of powers and roots we have:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
So:
![4a ^ 2b ^ 2 c ^ 3 \sqrt [3] {b}](https://tex.z-dn.net/?f=4a%20%5E%202b%20%5E%202%20c%20%5E%203%20%5Csqrt%20%5B3%5D%20%7Bb%7D)
Answer:
Option B
Answer:


Step-by-step explanation:
The ∆ given is an isosceles ∆ with a right angle measuring 90°, and two congruent angles measuring 45° each.
Using trigonometric ratio formula, we can find the lengths of the missing side as shown below:
Finding e:


hyp = 26
opp = e = ?
Plug in the values into the formula

Multiply both sides by 26





Since side e is of the same length with side f, therefore, the length of side f = 