Answer:
H2SO4 + 8HI → H2S + 4I2 + 4H2O
Kc' =Kc^1/3
=3√0.0061
=0.182716013
A buffer solution contains an equivalent amount of acid and base. The pH of the solution with an acid dissociation constant (pKa) value of 3.75 is 3.82.
<h3>What is pH?</h3>
The amount of hydrogen or the proton ion in the solution is expressed by the pH. It is given by the sum of pKa and the log of the concentration of acid and bases.
Given,
Concentration of salt [HCOO⁻] = 0.24 M
Concentration of acid [HCOOH] = 0.20 M
The acid dissociation constant (pKa) = 3.75
pH is calculated from the Hendersons equation as,
pH = pKa + log [salt] ÷ [acid]
pH = 3.75 + log [0.24] ÷ [0.20]
= 3.75 + log (1.2)
= 3.75 + 0.079
= 3.82
Therefore, 3.82 is the pH of the buffer.
Learn more about pH here:
brainly.com/question/27181245
#SPJ4
Answer:
volume of the container will decreases if pressure increases.
Explanation:
According to Boyle's law:
Pressure is inversely proportional to volume which means if pressure of a gas increases the volume of the gas will decreases as gas molecules will collide and come closer forcefully so volume will decreases. And its formula for determining volume and pressure is:
<em>PV=nRT</em>
where "R" is a ideal gas constant
"T" is temperature and
"n" is number of particles given in moles while "V" is volume and "P" is pressure.
Answer:
Las moléculas de los reactivos tienen que chocar entre sí. Estos choques deben de producirse con energía suficiente de forma que se puedan romper y formar enlaces químicos. En el choque debe haber una orientación adecuada para que los enlaces que se tienen que romper y formar estén a una distancia y posición viable.