Since the compound has 1.38 time that of oxygen gas at the same conditions of temperature and pressure, we have the relationship:
MW/MWoxygen = 1.38
MW = 44.16
Since there is water formed during the reaction, the formula of the compound must be:
XaHb
where a and b are the coefficients of each element.
If the compound reactions with oxygen forming water and an oxide of the element X, the combustion reaction must be:
XaHb + ((2a + (b/2))/2) O2 = a (XO2) + (b/2)(H2O)
Using dimensional analysis:
10 (1/44.16) (b/2 / 1) (18) = 16.3
Solving for b:
b = 8
The compound now is XaH8. Most probably, the compound is C3H8 since it has a molecular formula of 44 and it reacts with O2 to form water and CO2.
Answer:
1s2 2s2 2p3
Explanation:
we know that the number of electrons in an atom is equal to number of protons. So the number of electrons here is 7.
Using Moller chart, the electronic configuration is writen by the electrons first enterring into 1s then into 2s after 2p. The s orbital accomodates maximum of 2 electrons.
∴ for atomic no. 7 nitrogen atom, electronic configuration is 1s2 2s2 2p3.
Answer:
Sodium has 1 valence electron and bismuth has 83 electrons (5 valence electrons)
Explanation:
Buoyancy is considered a physical property. It is a type of physical property because it is related to the density and weight of the item, which are both physical.
Answer:
1. mol/L
2. 0.120 M
Explanation:
1. Molarity is equal to the moles of solute divided by the liters of solution. The units of molarity are mol/L.
2.
Step 1: Given data
- Mass of sodium chloride (solute): 5.25 g
- Volume of solution (V): 750.0 mL = 0.7500 L
Step 2: Calculate the moles of solute (n)
The molar mass of NaCl is 58.44 g/mol.
n = 5.25 g × 1 mol/58.44 g = 0.0898 mol
Step 3: Determine the molarity of the solution
We will use the definition of molarity
M = n/V
M = 0.0898 mol / 0.7500 L = 0.120 M