1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksian1 [2.3K]
3 years ago
14

Bruce has a momentum of 430kg m/s and is running at 7.8m/s. What is Bruce's mass?

Physics
2 answers:
mixas84 [53]3 years ago
8 0

Answer:

55.13 kg

Explanation:

Momentum, P = m*v

P = m*v

m = P/v

m = 430/7.8

m = 55.13 kg

ryzh [129]3 years ago
7 0

Answer:

55.128kg

Explanation:

P= m×v

or, m=P/v = 430/7.8 = 55.128 kg

You might be interested in
The wave functions for states of the hydrogen atom with orbital quantum number l=0 are much simpler than for most other states,
Thepotemich [5.8K]
True. Fun fact. Hope this helps
4 0
3 years ago
The Cartesian coordinate of a point in the xy plane are (x,y)=(-3.50,-2.50)m. Find the poler coordinate of this point
Masja [62]

Answer:

The polar coordinate of P(x,y) = (-3.50\,m,-2.50\,m) is P (r,\theta) = (4.301\,m, 215.538^{\circ}).

Explanation:

Given a point in rectangular form, that is P(x,y) = (x,y), its polar form is defined by:

P(x,y) = (r,\theta) (1)

Where:

r - Norm, measured in meters.

\theta - Direction, measured in sexagesimal degrees.

The norm of the point is determined by Pythagorean Theorem:

r = \sqrt{x^{2}+y^{2}} (2)

And direction is calculated by following trigonometric relation:

\theta = \tan^{-1} \frac{y}{x} (3)

If we know that x = -3.50\,m and y = -2.50\,m, then the components of coordinates in polar form is:

r = \sqrt{(-3.50\,m)^{2}+(-2.50\,m)^{2}}

r \approx 4.301\,m

Since x < 0\,m and y < 0\,m, direction is located at 3rd Quadrant. Given that tangent function has a period of 180º, we find direction by using this formula:

\theta = 180^{\circ}+\tan^{-1} \left(\frac{-2.50\,m}{-3.50\,m} \right)

\theta \approx 215.538^{\circ}

The polar coordinate of P(x,y) = (-3.50\,m,-2.50\,m) is P (r,\theta) = (4.301\,m, 215.538^{\circ}).

5 0
3 years ago
Three cars (car F, car G, and car H) are moving with the same speed and slam on their brakes. The most massive car is car F, and
Crazy boy [7]

To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.

From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

v_f^2=v_i^2+2ax

Where,

v_f = Final velocity

v_i = Initial Velocity

a = Acceleration

x = Displacement

Acceleration can be expressed in terms of the drag coefficient by means of

F_f = \mu_k (mg)  \rightarrowFrictional Force

F = ma \rightarrow Force by Newton's second Law

Where,

m = mass

a= acceleration

\mu_k = Kinetic frictional coefficient

g = Gravity

Equating both equation we have that

F_f = F

\mu_k mg=ma

a = \mu_k g

Therefore,

v_f^2=v_i^2+2ax

0=v_i^2+2(\mu_k g)x

Re-arrange to find x,

x = \frac{v_i^2}{2(-\mu_k g)}

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.

3 0
3 years ago
What is the speed of a bobsled whose distance-time graph indicates that it traveled 114m in 30s? m/s
Kitty [74]
3.8 m/s
--------------
5 0
3 years ago
flipper (the dolphin) is out in the open ocean hunting tuna avec. he emits his pulse at 22khz and .42 seconds later he hears it
marusya05 [52]
First we need to find the speed of the dolphin sound wave in the water. We can use the following relationship between frequency and wavelength of a wave:
v=\lambda f
where
v is the wave speed
\lambda its wavelength
f its frequency
Using \lambda = 2 cm = 0.02 m and f=22 kHz = 22000 Hz, we get
v=(0.02 m)(22000 Hz)=440 m/s

We know that the dolphin sound wave takes t=0.42 s to travel to the tuna and back to the dolphin. If we call L the distance between the tuna and the dolphin, the sound wave covers a distance of S=2 L in a time t=0.42 s, so we can write the basic relationship between space, time and velocity for a uniform motion as:
v= \frac{S}{t}= \frac{2L}{t}
and since we know both v and t, we can find the distance L between the dolphin and the tuna:
L= \frac{vt}{2}= \frac{(440 m/s)(0.42 s)}{2}=92.4 m
5 0
4 years ago
Other questions:
  • Table salt is blank mixed with other compunds
    6·1 answer
  • As a car skids to a stop, friction transforms kinetic energy to
    14·1 answer
  • if the input force on a wheel and axle is 2 N and the output force is 20N what is its mechanical advantage
    8·1 answer
  • 2. A small car has a mass of 890 kg. What is its weight? (Hint: remember the definition of weight).
    11·1 answer
  • A chair of weight 125 N lies atop a horizontal floor; the floor is not frictionless. You push on the chair with a force of F = 3
    15·1 answer
  • A block rides on a piston that is moving vertically with simple harmonic motion. (a) If the SHM has period 2.68 s, at what ampli
    7·1 answer
  • I have an algorithm that runs in O(N ), where N is the size of the problem. For N = 100, the time for the algorithm to run is 1
    5·1 answer
  • Satellite communication is only possible using
    14·2 answers
  • The upward normal force exerted by the floor is 710 N on an elevator passenger who weighs 720 N . You may want to review (Pages
    11·1 answer
  • What is the definition of mutual flux?​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!