Answer:
Explanation:
F = GmM/d²
As gravity force is proportional to the inverse of the square of the distance,
doubling the distance will reduce the weight to a forth.
F' = GmM/(2d)²
F' = ¼GmM/d²
F' = ¼F = ¼(4000)
F' = 1000 N
I think this type of equation could be conducted in simple division equation since it does not involve drop rate.
we know that there is 500 ml of substance and should be infused within 8 hours period.
So the flow rate in ml/hr would be:
500/8 = 62.5 ml/hr
Answer:
the maximum current is 500 A
Explanation:
Given the data in the question;
the B field magnitude on the surface of the wire is;
B = μ₀i / 2πr
we are to determine the maximum current so we rearrange to find i
B2πr = μ₀i
i = B2πr / μ₀
given that;
diameter d = 2 mm = 0.002 m
radius = 0.002 / 2 = 0.001 m
B = 0.100 T
we know that permeability; μ₀ = 4π × 10⁻⁷ Tm/A
so we substitute
i = (0.100)(2π×0.001 ) / 4π × 10⁻⁷
i = 500 A
Therefore, the maximum current is 500 A
Answer:
Value of 
Explanation:
We have given
In first case resistance is
and current is 1.8 A
Let the potential difference is v
So
----eqn 1
In second case resistance is
and current is 1.6 A and potential difference will be as it is a series connection
So
----eqn 2
From eqn 1 and eqn 2

