The correct answer is<span> number of oscillations in a given period of time
This is measured in what is called the Hertz measurement and the period of time is usually taken to be per second.</span>
The concept of this problem is the Law of Conservation of Momentum. Momentum is the product of mass and velocity. To obey the law, the momentum before and after collision should be equal:
m₁ v₁ + m₂v₂ = m₁v₁' + m₂v₂', where
m₁ and m₂ are the masses of the proton and the carbon nucleus, respectively,
v₁ and v₂ are the velocities of the proton and the carbon nucleus before collision, respectively,
v₁' and v₂' are the velocities of the proton and the carbon nucleus after collision, respectively,
m(164) + 12m(0) = mv₁' + 12mv₂'
164 = v₁' + 12v₂' --> equation 1
The second equation is the coefficient of restitution, e, which is equal to 1 for perfect collision. The equation is
(v₂' - v₁')/(v₁ - v₂) = 1
(v₂' - v₁')/(164 - 0) = 1
v₂' - v₁'=164 ---> equation 2
Solving equations 1 and 2 simultaneously, v₁' = -138.77 m/s and v₂' = +25.23 m/s. This means that after the collision, the proton bounced to the left at 138.77 m/s, while the stationary carbon nucleus move to the right at 25.23 m/s.
When someone is struct by lightning, the electricity passes through the body, into the earth. Here, our body acts as a lightning conductor to complete the earthing process.
Answer:
1. <u>F = ma</u> <em>F = 0.2kg * 20m/s² = 4Kg * m/s² =</em> 4N
2. <u>F = ma</u> <em>F - 18Kg * 3m/s² = 54Kg * m/s² =</em> 54N
3. <u>F = ma</u> <em>F = 0.025Kg * 5m/s² =</em> 0.125N
4. <u>F = ma</u> <em>F = 50Kg * 4m/s² =</em> 200N
5. <u>F = ma</u> <em>F = 70Kg * 4m/s² =</em> 280N
6. <u>F = ma</u> <em>F = 9Kg * 9.8m/s² =</em> 88.2N
Explanation:
Hope this helps ! ^^
Answer:
B. The truck and mosquito exert the same size force on each other.
Explanation:
Newton's third law (law of action-reaction) states that
"When an object A exerts a force (action) on an object B, then object B exerts an equal and opposite force (reaction) on object A"
In this case, we can call
object A = the truck
object B = the mosquito
Thereforce according to Newton's third law, the force exerted by the truck on the mosquito is equal in magnitude to the force exerted by the mosquito on the truck (and in opposite direction).
The reason for which the mosquito will experience much more damage is the fact that the mosquito's mass is much smaller than the truck's mass, and since the acceleration is inversely proportional to the mass:

the mosquito will experience a much larger deceleration than the truck, therefore much more damage.