Answer:
Explanation:
Given
mass of person
=68 kg
car dips about 1.2 cm
We know
F=kx
Where k=combined spring constant
mg=kx



I think the situation is modeled by the scenario in the attached image. Some specific values seem to be missing (like the height of door
)...
The door forms a right triangles that satisfies

We also have

so if you happen to know the height of the door, you can solve for
and
.
is fixed, so

We can solve for the angular velocity
:

At the point when
and
ft/s, we get

0.4 x 18 = 7.2 kg m/s
The momentum of the bottle after being hit is 0.2 x 25 = 5 kg m/s
7.2 - 5 = 2.2 kg m/s is the motmentum of the ball now
the velocity is 2.2/0.4 = 5.5 m/s
Answer:
<u>thermal power stations</u>
Explanation:
these resources are burned to produce the electricity.
Answer:0.061
Explanation:
Given

Temperature of soup 
heat capacity of soup 
Here Temperature of soup is constantly decreasing
suppose T is the temperature of soup at any instant
efficiency is given by



integrating From
to 


![W=c_v\left [ T-T_C\ln T\right ]_{T_H}^{T_C}](https://tex.z-dn.net/?f=W%3Dc_v%5Cleft%20%5B%20T-T_C%5Cln%20T%5Cright%20%5D_%7BT_H%7D%5E%7BT_C%7D)
![W=c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]](https://tex.z-dn.net/?f=W%3Dc_v%5Cleft%20%5B%20%5Cleft%20%28%20T_C-T_H%5Cright%20%29-T_C%5Cleft%20%28%20%5Cln%20%5Cfrac%7BT_C%7D%7BT_H%7D%5Cright%20%29%5Cright%20%5D)
Now heat lost by soup is given by

Fraction of the total heat that is lost by the soup can be turned is given by

![=\frac{c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]}{c_v(T_C-T_H)}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bc_v%5Cleft%20%5B%20%5Cleft%20%28%20T_C-T_H%5Cright%20%29-T_C%5Cleft%20%28%20%5Cln%20%5Cfrac%7BT_C%7D%7BT_H%7D%5Cright%20%29%5Cright%20%5D%7D%7Bc_v%28T_C-T_H%29%7D)



