I think the correct answer from the choices listed above is the second option. When two hydrogen atoms enter the ETS as part of either NADH or FADH2, the two hydrogen atoms are split into two H+ and two electrons. Hope this answers the questions.
Answer:
Most substituted alkene is produced as a major product
Explanation:
- Dehydration of 3-methyl-2-butanol proceeds through E1 mechanism to form alkenes.
- Most substituted alkene is produced as major product because of presence of highest number of hyperconjugative hydrogen atoms corresponding to the produced double bond (Saytzeff product).
- Here, a H-shift also occurs in one of the intermediate step during dehydration to produce more stable tertiary carbocation.
- Reaction mechanism has been shown below.
Answer:
S= 2(1) = 2
O= 2(4) = 8
Na= 2(2) = 4
Explanation:
The given compound is:
2Na₂SO₄
An element is a distinct substance that cannot be split up into simpler substances.
So;
Number of atoms of elements here are:
S= 2(1) = 2
O= 2(4) = 8
Na= 2(2) = 4
Answer:
None of these are correct, because there is no way to balance this equation, but I hope these steps help you figure out your answer.
Explanation:
Count out the single amounts of elements you have on both sides of the equation. To be balanced, you need to have the exact same for each element.
Before balanced Left side.
Cl-2
O-8
H-2
Before balanced right side.
H-1
Cl-1
O-3
That means we need to increase Hydrogen, Chlorine and Oxygen on the right for sure and see how that affects the equation. You can keep adding the Coefficients until the # of elements begin to match on each side.
(I tried to balance this equation, it doesn't work, there is too much on the reactants side for what the product is.)
Answer:
Water (H2O) is polar due to the bent shape of the molecule. The shape means most of the negative charge from the oxygen is one one side of the molecule and the positive charge of the hydrogen atoms is on the other side of the molecule. This is an example of polar covalent chemical bonding.
Hope this helps!