During the digestion process, the first step would be mastication, lubrication with the saliva, and later on is being formed into a bolus. Bolus is the term used for food substance that is turned into small balls. When the bolus is formed, this is then pushed or moved to the stomach.
<span>The energy (E) per photon is expressed by Planck's equation: E = hf, where f is
the frequency and h is Planck's constant, experimentally determined to be
6.625 * 10**-34 joule-seconds. So to find E, we multiply h by the frequency
and obtain E = hf = (6.625 * 10**-34)(7.0 * 10**14) = 46.375 * 10**-20 joule
or in standard notation, E = 4.6375 * 10**-19 joule per photon.
Hope this answers your question.Sorry if I calculated wrong.</span>
<u>Answer:</u> When the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The overall chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[\frac{1}{2}\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Hence, when the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
Nolur acil lütfen yalvarırım sana da
Hello,
Your questions states:
During a change of state, the temperature of a substance _____?
In which you gave us some choices:
A. decreases if the arrangement of particles in the substance changes.
B. remains constant until the change of state is complete.
C. increases if the kinetic energy of the particles in the substance increases.
D. increases during melting and vaporization and decreases during freezing and condensation.
Your answer would be:
B. remains constant until the change of state is complete.
Your explanation/Reasoning:
It absorbs the energy, then after the phase changes it then increases the temperature all over again.
Have a nice day:)
Hope this helps!
~Rendorforestmusic