367.2 g of silver
Explanation:
To find the mass of a substance knowing the number of moles we use the following formula:
number of mole = mass / molecular weight
In the case of silver we use the atomic weight of 108 g/mole.
mass = number of moles × molecular weight
mass of silver = 3.4 moles × 108 g/mole
mass of silver = 367.2 g
Learn more about:
moles
brainly.com/question/2293005
#learnwithBrainly
Answer:
Fossil fuels.
Explanation:
A fossil fuel is a fuel obtained from nature such as crude oil, coal, wood etc. The burning of fossil fuels releases tremendous amounts of carbon IV oxide into the environment causing a myraid of environmental problems paramount among them is global warming with its attendant consequences.
Answer: The approximate equilibrium partial pressure of
is 3.92 atm
Explanation:
Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients.
The given balanced equilibrium reaction is,

![K_p=\frac{[H_2]^2\times [S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B%5BH_2%5D%5E2%5Ctimes%20%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
![1.5\times 10^{-5}=\frac{[H_2]^2\times [S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=1.5%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5Ctimes%20%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
On reversing the reaction:

initial pressure 4.00atm 2.00 atm 0
eqm (4.00-2x)atm (2.00-x) atm 2x atm
![K_p=\frac{[H_2S]^2}{[H_2]^2\times [S_2]}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B%5BH_2S%5D%5E2%7D%7B%5BH_2%5D%5E2%5Ctimes%20%5BS_2%5D%7D)


![0.67\times 10^5=\frac{2x]^2}{[4.00-2x]^2\times [2.00-x]}](https://tex.z-dn.net/?f=0.67%5Ctimes%2010%5E5%3D%5Cfrac%7B2x%5D%5E2%7D%7B%5B4.00-2x%5D%5E2%5Ctimes%20%5B2.00-x%5D%7D)

![[H_2S]=2x=2\times 1.96=3.92 atm](https://tex.z-dn.net/?f=%5BH_2S%5D%3D2x%3D2%5Ctimes%201.96%3D3.92%20atm)
Thus approximate equilibrium partial pressure of
is 3.92 atm
Mass of block, m = 5.26 lb
1 lb = 453.592 g
5.26 lb = 2385.896 g
V = 14 in3
1 in = 2.5 cm
1 in3 = 15.625 cm3
14 in3 = 218.75 cm3
Density = mass/volume
= 2358.896 / 218.75
= 10.783 g/cm3