From the stoichiometry of the balanced reaction equation, the correct statement are;
- For every 1 molecule of methane CH4 that reacts, 2 molecules of H2O are produced.
- For every 20 grams of methane (CH4) that reacts, 40 grams of H2O are produced.
- For every 200 moles of methane (CH4) that reacts, 400 moles of H2O are produced.
<h3>What is combustion?</h3>
The term combustion refers to the burning of fossil fuels for the purpose of energy production. The equation for reaction is CH4 + 2O2 ---> CO2 + 2H2O.
Using this equation as shown, the true statements are;
- For every 1 molecule of methane CH4 that reacts, 2 molecules of H2O are produced.
- For every 20 grams of methane (CH4) that reacts, 40 grams of H2O are produced.
- For every 200 moles of methane (CH4) that reacts, 400 moles of H2O are produced.
Learn more about combustion: brainly.com/question/15117038
Answer:
Chelate, any of a class of coordination or complex compounds consisting of a central metal atom attached to a large molecule, called a ligand, in a cyclic or ring structure. An example of a chelate ring occurs in the ethylenediamine-cadmium complex:
The ethylenediamine ligand has two points of attachment to the cadmium ion, thus forming a ring; it is known as a didentate ligand. (Three ethylenediamine ligands can attach to the Cd2+ ion, each one forming a ring as depicted above.) Ligands that can attach to the same metal ion at two or more points are known as polydentate ligands. All polydentate ligands are chelating agents.
Chelates are more stable than nonchelated compounds of comparable composition, and the more extensive the chelation—that is, the larger the number of ring closures to a metal atom—the more stable the compound. This phenomenon is called the chelate effect; it is generally attributed to an increase in the thermodynamic quantity called entropy that accompanies chelation. The stability of a chelate is also related to the number of atoms in the chelate ring. In general, chelates containing five- or six-membered rings are more stable than chelates with four-, seven-, or eight-membered rings.
Explanation:
Answer:
An element with 7 valence electrons will most likely be a halogen and gain an electron
Explanation:
17.8 mL NaOH
<em>Step 1.</em> Write the chemical equation
Fe^(2+) + 2NaOH → Fe(OH)2 + 2Na^(+)
<em>Step 2.</em> Calculate the moles of Fe^(2+)
Moles of Fe^(2+) = 500 mL Fe^(2+) × [0.0230 mmol Fe^(2+)]/[1 mL Fe^(2+)]
= 11.50 mmol Fe^(2+)
<em>Step 3.</em> Calculate the moles of NaOH
Moles of NaOH = 11.50 mmol Fe^(2+) × [2 mmol NaOH]/[1 mmol Fe^(2+)]
= 23.00 mmol NaOH
<em>Step 4.</em> Calculate the volume of NaOH
Volume of NaOH = 23.00 mmol NaOH × (1 mL NaOH/1.29 mmol NaOH)
= 17.8 mL NaOH