Answer : The mass defect required to release energy is 6111.111 kg
Explanation :
To calculate the mass defect for given energy released, we use Einstein's equation:

E = Energy released = 
= mass change = ?
c = speed of light = 
Now put all the given values in above equation, we get:


Therefore, the mass defect required to release energy is 6111.111 kg
Answer:
Iron remains = 17.49 mg
Explanation:
Half life of iron -55 = 2.737 years (Source)
Where, k is rate constant
So,
The rate constant, k = 0.2533 year⁻¹
Time = 2.41 years
= 32.2 mg
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
So,
<u>Iron remains = 17.49 mg</u>
Cu + 2H2SO4 ⟶ CuSO4 + SO2 + 2H20
In left hand side of the equation.
Cu = 1 atom
H = 4 atoms
S = 2 atoms
O = 8 atoms
In right hand side of the equation.
Cu = 1 atom
S = 2 atoms
0 = 8 atoms
H = 4 atoms
• All the atoms are balanced in the left and right side of the equation and it satisfies the law of conservation of mass.
• Equation is balanced and correct.
*See the attachment .
The reason does FeCl3 serve in the electrophilic sweet-smelling substitution response amongst chlorine and benzene is that it fills in as a Lewis corrosive impetus by responding with the Cl2 and along these lines actuates it toward assault by benzene's π electrons.
Answer:
The volume of the sample of the gas is found to be 12.90 L.
Explanation:
Given pressure of the gas = P = 1.10 atm
Number of moles of gas = n = 0.6000 mole
Temperature = T = 288.15 K
Assuming the volume of the gas to be V liters
The ideal gas equation is shown below

Volume occupied by gas = 12.90 L