1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zielflug [23.3K]
3 years ago
7

An RC circuit consists of a resistor with resistance 1.0 kΩ, a 120-V battery, and two capacitors, C1 and C2, with capacitances o

f 20.0 μF and 60.0 μF, respectively. Initially, the capacitors are uncharged; and the switch is closed at t = 0 s. How much charge will be stored in eah capacitor after a long time has elapsed (capacitor one 2.4 x 10^-3 C) (capacitor 2 7.2 x 10^-3 C) and what will the total charge on both capacitors two time constants after the switch is closed? (8.3 x 10^-3)
Physics
1 answer:
Serhud [2]3 years ago
5 0

Answer:

Q_t= 8.3 * 10^3 C

Explanation:

From the question we are told that:

Resistor R=1000ohms

Voltage v=120_V

Capacitance of c_1 c_1=20 \mu F

Capacitance of c_2 c_2=60 \mu F

Time t=0

Generally the equation for charges is mathematically given by

For C_1\\Charge\ on\ C_1 = CV = 20*120 = 2400 μC = 2.4 x 10^-3 C\\Charge\ on\ C_1 = 2400 μC = 2.4 x 10^-3 C\\Charge\ on\ C_1 = 2.4 x 10^-3 C\\

ForC_2\\Charge on C_2 = 60*120 =7200 μC =  7.2 x 10^-3\\Charge on C_2 =  7.2 x 10^-3

Generally the equation for voltage across capacitors is mathematically given by

V_c(t)=V(1-e^{-t/RC})

C=C_1+C_2=80 \mu f\\t=2RC=>160000s

V_c(t)=120(1-e^{-(160000)/1000*(80)})

V_c(t)=103.7598

Generally the equation for charges is mathematically given by

Q1(t) = C1Vc(t)\\Q1(t) = 20*103.7598\\Q1(t) = 2075.196\\\\Q2(t) = 60*103.7598\\Q2(t) = 6225.6\\

Generally the equation for total charges Q_t is mathematically given by

Q_t=Q1(t)+Q2(t)

Q_t= 8.3 * 10^3 C

You might be interested in
5kg mass is attached to a point by a 35 meter rope. The mass isreleased and falls in a circle. If the only forces acting on the
mr_godi [17]

Answer:

Tension at the bottom of the swing T = 52.794N

Explanation:

Detailed explanation and calculation is shown in the image below

8 0
3 years ago
SP: Calculate the moment
ipn [44]

Answer:

Moment of the force is 20 N-m.

Explanation:

Given:

Force exerted by the person is, F=80\ N

Distance of application of force from the point about which moment is needed is, d=25\ cm=\frac{25}{100}\ m=0.25\ m

Now, we know that, moment of a force 'F' about a point at a perpendicular distance of 'd' from the same point is given as the product of the force and the perpendicular distance.

Therefore, the moment of the force about the end of the claw hammer is given as:

M=F\times d\\\\M=(80\ N)(0.25\ m)\\\\M=20\textrm{ N-m}

Hence, the moment of the force exerted by the person about the end of the claw hammer is 20 N-m.

6 0
3 years ago
Please help! Will give brainliest. 10 points. Show work!
Natasha_Volkova [10]

Answer:

421.83 m.

Explanation:

The following data were obtained from the question:

Height (h) = 396.9 m

Initial velocity (u) = 46.87 m/s

Horizontal distance (s) =...?

First, we shall determine the time taken for the ball to get to the ground.

This can be calculated by doing the following:

t = √(2h/g)

Acceleration due to gravity (g) = 9.8 m/s²

Height (h) = 396.9 m

Time (t) =.?

t = √(2h/g)

t = √(2 x 396.9 / 9.8)

t = √81

t = 9 secs.

Therefore, it took 9 secs fir the ball to get to the ground.

Finally, we shall determine the horizontal distance travelled by the ball as illustrated below:

Time (t) = 9 secs.

Initial velocity (u) = 46.87 m/s

Horizontal distance (s) =...?

s = ut

s = 46.87 x 9

s = 421.83 m

Therefore, the horizontal distance travelled by the ball is 421.83 m

5 0
3 years ago
Which statement is true about effective nuclear charge?a. Effective nuclear charge decreases as we move to the right across a ro
MissTica

Answer:

Option b. Effective nuclear charge increases as we move to the right across a row in the periodic table

Explanation:

The <em>effective nuclear charge </em>is a measure of how strong the protons in the nucleus of an atom attract the outermost electrons of such atom.

The <em>effective nuclear charge</em> is the net positive charge experienced by valence electrons and is calculated (as an approximation) by the equation: Zeff = Z – S, where Z is the atomic number and S is the number of shielding electrons.

The shielding electrons are those electrons in between the interesting electrons and the nucleus of the atom.

Since the shielding electrons are closer to the nucleus, they repel the outermost electrons and so cancel some of the attraction exerted by the positive charge of the nucleus, meaning that the outermost electrons feel less the efect of attraction of the protons. That is why in the equation of Zeff, the shielding electrons (S) subtract the total from the atomic number Z.

The <em>effective nuclear charge</em>, then, is responsible for some properties and trends in the periodic table. Here, you can see how this explains the trend of the atomic radius (size of the atom) accross a row in the periodic table.

  • As the<em> effective nuclear charge</em> is larger, in a same row of the periodic table, the shielding effect is lower, the outermost electrons are more strongly attracted by the nucleus, and the size of the atoms decrease. That is why as we move to the right in the periodic table, the size of the atoms decrease.

3 0
3 years ago
A block with mass m 2.00 kg is placed against a spring on a frictionless incline with angle 30 degrees (Fig. B-43). (The block i
guajiro [1.7K]

Answer:

Explanation:

a )

The stored elastic energy of compressed spring

= 1 / 2 k X²

= .5 x 19.6 x (.20)²

= .392 J

b ) The stored potential energy will be converted into gravitational potential energy of the block earth system when the block will ascend along the incline . So change in the gravitational potential energy will be same as stored elastic potential energy of the spring that is .392 J .

c ) Let h be the distance along the incline which the block ascends.

vertical height attained ( H ) =h sin30

= .5 h

elastic potential energy = gravitational energy

.392 = mg H

.392 = 2 x 9.8 x .5 h

h = .04 m

4 cm .

=

7 0
3 years ago
Other questions:
  • How do we know that white light is composed of a rainbow of colors?
    5·1 answer
  • From your understanding of the relationship between temperature and pressure, what temperature would boiling water attain in the
    14·2 answers
  • You and two of your friends go to the movies. Each ticket cost $7.50. You share the cost of the popcorn. If each person pays $9.
    8·2 answers
  • Which of these best describes how an appropriate star chart is selected to locate objects in the sky
    10·1 answer
  • Which of the following situations would cause the greatest decrease in the motion of molecules in a system? A. Q = -50 J, W = -5
    6·1 answer
  • Giraffe bending to drink. In a giraffe with its head 1.83 m above its heart, and its heart 2.04 m above its feet, the(hydrostati
    5·1 answer
  • 0.235 moles of a diatomic gas expands doing 205 J of work while the temperature drops 88 K. Find Q.? (Unit=J)
    7·1 answer
  • Exit ticket: A lamp is plugged into a 110 Volt electrical outlet. There is a 9 Watt LED bulb in the lamp. a. What is
    13·1 answer
  • Forces at a Distance
    14·1 answer
  • Si un astronauta tiene una masa de 72kg si el valor de g en la luna es 1.6m/s2, ¿cual es la fuerza gravitacionar de la luna sobr
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!